1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/2/10.1063/1.4792250
1.
1. E. R. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, 2000).
2.
2. J. Birn and E. R. Priest, “ Magnetohydrodynamics and collisionless theory and observations,” Reconnection of Magnetic Fields (Cambridge University Press, 2007).
3.
3. J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, “ Geospace Environmental Modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106, 37153720, doi:10.1029/1999JA900449 (2001).
http://dx.doi.org/10.1029/1999JA900449
4.
4. J. F. Drake, M. A. Shay, and M. Swisdak, “ The Hall fields and fast magnetic reconnection,” Phys. Plasmas 15, 042306, (2008).
http://dx.doi.org/10.1063/1.2901194
5.
5. W. Daughton, J. Scudder, and H. Karimabadi, “ Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions,” Phys. Plasmas 13, 072101 (2006).
http://dx.doi.org/10.1063/1.2218817
6.
6. H. Karimabadi, W. Daughton, and J. Scudder, “ Multi-scale structure of the electron diffusion region,” Geophys. Res. Lett. 34, 13104, doi:10.1029/2007GL030306 (2007).
http://dx.doi.org/10.1029/2007GL030306
7.
7. W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. J. Albright, B. Bergen, and K. J. Bowers, “ Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas,” Nat. Phys. 7, 539542 (2011).
http://dx.doi.org/10.1038/nphys1965
8.
8. M. Nakamura and M. Scholer, “ Structure of the magnetopause reconnection layer and of flux transfer events: Ion kinetic effects,” J. Geophys. Res. 105, 2317923192, doi:10.1029/2000JA900101 (2000).
http://dx.doi.org/10.1029/2000JA900101
9.
9. H. Xie and Y. Lin, “ Two-dimensional hybrid simulation of the dayside reconnection layer and associated ion transport,” J. Geophys. Res. 105, 2517125184, doi:10.1029/2000JA000143 (2000).
http://dx.doi.org/10.1029/2000JA000143
10.
10. M. Swisdak, B. N. Rogers, J. F. Drake, and M. A. Shay, “ Diamagnetic suppression of component magnetic reconnection at the magnetopause,” J. Geophys. Res. 108, 1218, doi: 10.1029/2002JA009726 (2003).
http://dx.doi.org/10.1029/2002JA009726
11.
11. P. L. Pritchett, “ Collisionless magnetic reconnection in an asymmetric current sheet,” J. Geophys. Res. 113, 6210, doi: 10.1029/2007JA012930 (2008).
http://dx.doi.org/10.1029/2007JA012930
12.
12. K. G. Tanaka, A. Retinò, Y. Asano, M. Fujimoto, I. Shinohara, A. Vaivads, Y. Khotyaintsev, M. André, M. B. Bavassano Cattaneo, S. C. Buchert, and C. J. Owen, “ Effects on magnetic reconnection of a density asymmetry across the current sheet,” Ann. Geophys. 26, 24712483 (2008).
http://dx.doi.org/10.5194/angeo-26-2471-2008
13.
13. P. L. Pritchett and F. S. Mozer, “ Asymmetric magnetic reconnection in the presence of a guide field,” J. Geophys. Res. 114, 11210, doi: 10.1029/2009JA014343(2009).
http://dx.doi.org/10.1029/2009JA014343
14.
14. P. L. Pritchett and F. S. Mozer, “ The magnetic field reconnection site and dissipation region,” Phys. Plasmas 16, 080702 (2009).
http://dx.doi.org/10.1063/1.3206947
15.
15. K. Malakit, M. A. Shay, P. A. Cassak, and C. Bard, “ Scaling of asymmetric magnetic reconnection: Kinetic particle-in-cell simulations,” J. Geophys. Res. 115, 10223, doi: 10.1029/2010JA015452 (2010).
http://dx.doi.org/10.1029/2010JA015452
16.
16. F. S. Mozer and P. L. Pritchett, “ Electron physics of asymmetric magnetic field reconnection,” Space Sci. Rev. 158, 119143 (2011).
http://dx.doi.org/10.1007/s11214-010-9681-8
17.
17. C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation, HB ed. (Taylor & Francis, 2005).
18.
18. A. S. Lipatov, The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas (Springer, 2002).
19.
19. M. Hesse, J. Birn, and M. Kuznetsova, “ Collisionless magnetic reconnection: Electron processes and transport modeling,” J. Geophys. Res. 106, 37213736, doi:10.1029/1999JA001002 (2001).
http://dx.doi.org/10.1029/1999JA001002
20.
20. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, and S. Zenitani, “ The diffusion region in collisionless magnetic reconnection,” Space Sci. Rev. 160(1–4 ), 323 (2011).
http://dx.doi.org/10.1007/s11214-010-9740-1
21.
21. N. Aunai, M. Hesse, C. Black, R. Evans, and M. Kuznetsova, “ Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers,” Phys. Plasmas (submitted).
22.
22. R. Smets, G. Belmont, D. Delcourt, and L. Rezeau, “ Diffusion at the Earth magnetopause: Enhancement by Kelvin-Helmholtz instability,” Ann. Geophys. 25, 271282 (2007).
http://dx.doi.org/10.5194/angeo-25-271-2007
23.
23. N. Aunai, G. Belmont, and R. Smets, “ Proton acceleration in antiparallel collisionless magnetic reconnection: Kinetic mechanisms behind the fluid dynamics,” J. Geophys. Res. 116, 09232, doi: 10.1029/2011JA016688 (2011).
http://dx.doi.org/10.1029/2011JA016688
24.
24. S. Zenitani, M. Hesse, A. Klimas, and M. Kuznetsova, “ New measure of the dissipation region in collisionless magnetic reconnection,” Phys. Rev. Lett. 106, 195003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.195003
25.
25. N. Aunai, G. Belmont, and R. Smets, “ Energy budgets in collisionless magnetic reconnection: Ion heating and bulk acceleration,” Phys. Plasmas 18, 122901 (2011).
http://dx.doi.org/10.1063/1.3664320
26.
26. W. Alpers, “ Steady state charge neutral models of the magnetopause,” Astrophys. Space Sci. 5, 425437 (1969).
http://dx.doi.org/10.1007/BF00652391
27.
27. M. Roth, J. de Keyser, and M. M. Kuznetsova, “ Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas,” Space Sci. Rev. 76, 251317 (1996).
http://dx.doi.org/10.1007/BF00197842
28.
28. F. Mottez, “ Exact nonlinear analytic Vlasov-Maxwell tangential equilibria with arbitrary density and temperature profiles,” Phys. Plasmas 10, 25012508 (2003).
http://dx.doi.org/10.1063/1.1573639
29.
29. G. Belmont, N. Aunai, and R. Smets, “ Kinetic equilibrium for an asymmetric tangential layer,” Phys. Plasmas 19, 022108 (2012).
http://dx.doi.org/10.1063/1.3685707
30.
30. M. Hesse, S. Zenitani, and A. Klimas, “ The structure of the electron outflow jet in collisionless magnetic reconnection,” Phys. Plasmas 15, 112102 (2008).
http://dx.doi.org/10.1063/1.3006341
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/2/10.1063/1.4792250
Loading
/content/aip/journal/pop/20/2/10.1063/1.4792250
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/2/10.1063/1.4792250
2013-02-15
2014-09-22

Abstract

Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/2/1.4792250.html;jsessionid=1jonk6nt4tdbf.x-aip-live-02?itemId=/content/aip/journal/pop/20/2/10.1063/1.4792250&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/2/10.1063/1.4792250
10.1063/1.4792250
SEARCH_EXPAND_ITEM