1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/3/10.1063/1.4794320
1.
1. L. Landau, J. Phys. USSR 10, 25 (1946) [English translation reproduced in Collected papers of L.D. Landau, edited by D. ter Haar (Pergamon, 1965), pp. 445–460].
2.
2. T. O'Neil, Phys. Fluids 8, 2255 (1965).
http://dx.doi.org/10.1063/1.1761193
3.
3. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).
http://dx.doi.org/10.1103/PhysRev.108.546
4.
4. M. B. Isichenko, Phys. Rev. Lett. 78, 2369 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2369
5.
5. G. Manfredi, Phys. Rev. Lett. 79, 2815 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2815
6.
6. M. C. Firpo and Y. Elskens, Phys. Rev. Lett. 84, 3318 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3318
7.
7. A. Ivanov, I. Cairns, and P. Robinson, Phys. Plasmas 11, 4649 (2004).
http://dx.doi.org/10.1063/1.1785789
8.
8. J. Barré and Y. Y. Yamaguchi, Phys. Rev. E 79, 036208 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.036208
9.
9. C. Tsallis, J. Stat. Phys. 52, 479 (1988).
http://dx.doi.org/10.1007/BF01016429
10.
10. R. Silva, Jr., A. R. Plastino, and J. A. S. Lima, Phys. Lett. A 249, 401 (1998).
http://dx.doi.org/10.1016/S0375-9601(98)00710-5
11.
11. M. Tribeche, L. Djebarni, and R. Amour, Phys. Plasmas 17, 042114 (2010).
http://dx.doi.org/10.1063/1.3374429
12.
12. A. Lavagno and P. Quarati, in Proceedings of the Sixth International Workshop on Topics in Astroparticle and Underground Physics [Nucl. Phys. B 87(Suppl.), 209 (2000)].
13.
13. A. Lavagno, G. Kaniadakis, M. Rego-Monteiro, P. Quarati, and C. Tsallis, Astrophys. Lett. Commun. 35, 449 (1998).
14.
14. F. Valentini, Phys. Plasmas 12, 072106 (2005).
http://dx.doi.org/10.1063/1.1947967
15.
15. C. Z. Cheng and G. Knorr, J. Comput. Phys. 22, 330 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90053-X
16.
16. T. Arber and R. Vann, J. Comput. Phys. 180, 339 (2002).
http://dx.doi.org/10.1006/jcph.2002.7098
17.
17. E. Fijalkow, Comput. Phys. Commun. 116, 319 (1999).
http://dx.doi.org/10.1016/S0010-4655(98)00146-5
18.
18. P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).
http://dx.doi.org/10.1016/0021-9991(84)90143-8
19.
19. J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973).
http://dx.doi.org/10.1016/0021-9991(73)90147-2
20.
20. M. Frigo and S. G. Johnson, Proc. IEEE 93, 216 (2005).
http://dx.doi.org/10.1109/JPROC.2004.840301
21.
21. A. Ghizzo, B. Izrar, P. Bertrand, E. Fijalkow, M. R. Feix et al., Phys. Fluids 31, 72 (1988).
http://dx.doi.org/10.1063/1.866579
22.
22. R. Vann, “Characterisation of fully nonlinear Berk-Breizman phenomenonology,” Ph.D. dissertation (University of Warwick, 2002).
23.
23. F. Valentini and R. D'Agosta, Phys. Plasmas 14, 092111 (2007).
http://dx.doi.org/10.1063/1.2776897
24.
24. M. R. Feix, P. Bertrand, and A. Ghizzo, in Advances in Kinetic Theory and Computing, edited by B. Perthame (World Scientific, Singapore, 1994), pp. 4581.
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4794320
Loading
/content/aip/journal/pop/20/3/10.1063/1.4794320
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/3/10.1063/1.4794320
2013-03-12
2014-10-31

Abstract

In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma ( = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. , 2815–2818 (1997)] using long-time simulations up to . The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as “BGK structures”). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy -distributions for long times, up to . We show that BGK structures are found only for a certain range of -values around  = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of where velocity distributions have long tails, strong Landau damping inhibits the formation of BGK structures. On the other hand, for where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/3/1.4794320.html;jsessionid=1m18c58bij58l.x-aip-live-02?itemId=/content/aip/journal/pop/20/3/10.1063/1.4794320&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4794320
10.1063/1.4794320
SEARCH_EXPAND_ITEM