1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Landau damping in a turbulent setting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/3/10.1063/1.4794851
1.
1. L. Landau, J. Exp. Theor. Phys. 16, 574 (1946);
1. L. Landau, J. Phys. USSR 10, 26 (1946).
2.
2. N. Van Kampen, Physica 21, 949 (1955).
http://dx.doi.org/10.1016/S0031-8914(55)93068-8
3.
3. K. Case, Ann. Phys. 7, 349 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90029-6
4.
4. B. F. Farrell and P. J. Ioannou, J. Atmos. Sci. 53, 2025 (1996).
http://dx.doi.org/10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
5.
5. L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, 2005).
6.
6. C. Mouhot and C. Villani, Acta Math. 207, 29 (2011).
http://dx.doi.org/10.1007/s11511-011-0068-9
7.
7. P. Goldreich and S. Sridhar, Astrophys. J. 438, 763 (1995).
http://dx.doi.org/10.1086/175121
8.
8. A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W. Hammett, G. G. Howes, E. Quataert, and T. Tatsuno, Astrophys. J. Suppl. 182, 310 (2009), e-print arXiv:0704.0044.
http://dx.doi.org/10.1088/0067-0049/182/1/310
9.
9. G. G. Howes, S. C. Cowley, W. Dorland, G. W. Hammett, E. Quataert, and A. A. Schekochihin, J. Geophys. Res. 113, A05103, doi:10.1029/2007JA012665 (2008).
http://dx.doi.org/10.1029/2007JA012665
10.
10.Actually, the model is quite generic, as it merely assumes the local conservative flow of energy in k-space, corrected by scale-dependent damping.
11.
11. G. G. Howes, J. M. TenBarge, and W. Dorland, Phys. Plasmas 18, 102305 (2011).
http://dx.doi.org/10.1063/1.3646400
12.
12. J. M. TenBarge and G. G. Howes, Phys. Plasmas 19, 055901 (2012).
http://dx.doi.org/10.1063/1.3693974
13.
13.A refined model was proposed by Howes, TenBarge, and Dorland (Ref. 11) that already identifies a mechanism to explain the modest effect of Landau damping on the cascade. The present work describes a distinct mechanism; we note that these mechanisms are not mutually exclusive.
14.
14. M. Barnes, F. I. Parra, and A. A. Schekochihin, Phys. Rev. Lett. 107, 115003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.115003
15.
15. G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.3019
16.
16.The term “irreversible” is used here in the broader sense of statistical mechanics, rather than the restrictive sense of collisional entropy production in plasmas. See Sec. VII.5 of Kampen and Felderhof (Ref. 19) for a detailed discussion.
17.
17. C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 83, 1974 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1974
18.
18. D. Swanson, Plasma waves (Institute of Physics, Bristol, 2003).
19.
19. N. G. Van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics (North-Holland, Amsterdam, 1967).
20.
20. P. J. Morrison, Transp. Theory Stat. Phys. 29, 397 (2000).
http://dx.doi.org/10.1080/00411450008205881
21.
21. S. H. Strogatz, Physica D 143, 1 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
22.
22. P. J. Morrison and D. Pfirsch, Phys. Fluids B 4, 3038 (1992).
http://dx.doi.org/10.1063/1.860415
23.
23.The transformation used here is expressed in slightly different notation than that used by Morrison and Pfirsch (Ref. 22), but is otherwise equivalent; see Morrison (Ref. 20) for a rigorous mathematical treatment.
24.
24. J. A. Krommes, Phys. Rep. 360, 1 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00066-7
25.
25. E. Mazzucato, R. Bell, S. Ethier, J. Hosea, S. Kaye, B. LeBlanc, W. Lee, P. Ryan, D. Smith, W. Wang, J. Wilson, and H. Yuh, Nucl. Fusion 49, 055001 (2009).
http://dx.doi.org/10.1088/0029-5515/49/5/055001
26.
26. T. Görler and F. Jenko, Phys. Plasmas 15, 102508 (2008).
http://dx.doi.org/10.1063/1.3006086
27.
27.For example, for and , the free energy is .
28.
28. R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (Institute of Physics, Bristol, 1995).
29.
29. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).
30.
30. U. Frisch, S. Kurien, R. Pandit, W. Pauls, S. S. Ray, A. Wirth, and J.-Z. Zhu, Phys. Rev. Lett. 101, 144501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.144501
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4794851
Loading
/content/aip/journal/pop/20/3/10.1063/1.4794851
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/3/10.1063/1.4794851
2013-03-12
2014-11-23

Abstract

To address the problem of Landau damping in kinetic turbulence, we consider the forcing of the linearized Vlasov equation by a stationary random source. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this result offers a fresh perspective from which to reconsider recent observations of kinetic turbulence satisfying critical balance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/3/1.4794851.html;jsessionid=gwpov8io4x9.x-aip-live-02?itemId=/content/aip/journal/pop/20/3/10.1063/1.4794851&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Landau damping in a turbulent setting
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4794851
10.1063/1.4794851
SEARCH_EXPAND_ITEM