Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Rev. Lett. 86, 4306 (2001).
2. H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 9, 1745 (2002).
3. L. Yin, B. J. Albright, K. J. Bowers, W. Daughton, and H. A. Rose, Phys. Rev. Lett. 99, 265004 (2007).
4. B. I. Cohen, E. A. Williams, and H. X. Vu, Phys. Plasmas 14, 0127071 (2007).
5. C. J. Walsh, D. M. Villeneuve, and H. A. Baldis, Phys. Rev. Lett. 53, 1445 (1984).
6. P. K. Kaw, A. T. Lin, and J. M. Dawson, Phys. Fluids 16, 1967 (1973).
7. C. H. Aldrich, B. Bezzerides, D. F. DuBois, and H. A Rose, Comments Plasma Phys. Controlled Fusion 10, 19 (1986).
8. H. C. Barr and F. F. Chen, Phys. Fluids 30, 1180 (1987).
9. H. A. Rose, D. F. DuBois, and B. Bezzerides, Phys. Rev. Lett. 58, 2547 (1987).
10. D. M. Villeneuve, H. A. Baldis, and J. E. Bernard, Phys. Rev. Lett. 59, 1585 (1987).
11. H. A. Baldis, P. E. Young, R. P. Drake et al., Phys. Rev. Lett. 62, 2829 (1989).
12. D. S. Montgomery, J. A. Cobble, J. C. Fernandez et al., Phys. Plasmas 9, 2311 (2002).
13. H. X. Vu, D. F. DuBois, J. F. Myatt, and D. A. Russell, Phys. Plasmas 19, 102703 (2012).
14. C. K. Birdsall and A. Bruce Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).
15. J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, 2009).
16. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1972).
17. H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 14, 0127021 (2007).
18. C. Kittel, Introduction to Solid State Physics, 5th ed. (John Wiley and Sons, New York, 1976).
19. H. X. Vu, B. Bezzerides, and D. F. DuBois, J. Comput. Phys. 156, 12 (1999).
20. J. L. Kline, D. S. Montgomery, B. Bezzerides, J. A. Cobble, D. F. DuBois, R. P. Johnson, H. A. Rose, L. Yin, and H. X. Vu, Phys. Rev. Lett. 94, 175003 (2005).
21. H. X. Vu, L. Yin, D. F. DuBois, B. Bezzerides, and E. S. Dodd, Phys. Rev. Lett. 95, 245003 (2005).
22. L. Yin, W. Daughton, B. J. Albright, B. Bezzerides, D. F. DuBois, J. M. Kindel, and H. X. Vu, Phys. Rev. E 73, 025401 (2006).
23. J. C. Fernandez et al., Phys. Rev. Lett. 77, 2702 (1996).
24. R. K. Kirkwood et al., Phys. Rev. Lett. 77, 2706 (1996).
25. D. Umstadter, W. B. Mori, and C. Joshi, Phys. Fluid B 1, 183 (1989).
26. C. Riconda, A. Heron, D. Pesme, S. Huller, V. T. Tikhonchuck, and F. Detering, Phys. Rev. Lett. 94, 055003 (2005).
27. K. Estabrook, W. L. Kruer, and M. G. Haines, Phys. Fluid B 1, 1282 (1989).
28. G. Bonnaud, D. Pesme, and R. Pellat, Phys. Fluid B 2, 1618 (1990).
29. G. Bonnaud, D. Pesme, and R. Pellat, Phys. Fluid B 4, 423 (1992).

Data & Media loading...


Article metrics loading...



Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at (kLW , k IAW , and k 0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are strong and temporal anti-correlation with BSRS is due to pump depletion in addition to frequency detuning. In most cases studied, BSBS suppressed the time-averaged reflectivity of BSRS compared to the levels obtained with fixed ions (and therefore no BSBS). The strong spatial modulation of the Bloch Langmuir waves appears to weaken electron trapping and thereby lowers the inflated reflectivity levels of BSRS.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd