1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Model of magnetic reconnection in space and astrophysical plasmas
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/3/10.1063/1.4796051
1.
1. J. W. Dungey, Cosmic Electrodynamics (Cambridge University Press, New York 1958), p. 99.
2.
2. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
http://dx.doi.org/10.1063/1.1706761
3.
3. D. I. Pontin, Adv. Space Res. 47, 1508 (2011).
http://dx.doi.org/10.1016/j.asr.2010.12.022
4.
4. M. Yamada, R. Kulsrud, and H. T. Ji, Rev. Mod. Phys. 82, 603 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.603
5.
5. E. Zweibel and M. Yamada, Annu. Rev. Astron. Astrophys. 47, 291 (2009).
http://dx.doi.org/10.1146/annurev-astro-082708-101726
6.
6. Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations, edited by J. Birn and E. R. Priest (Cambridge University Press, 2007).
7.
7. E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, 2007).
8.
8. D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, 2005).
9.
9. P. A. Sweet, in Electromagnetic Phenomena in Cosmical Physics, IAU Symposium, edited by B. Lehnert (Cambridge University Press, London), Vol. 6, p. 123.
10.
10. E. N. Parker, J. Geophys. Res. 62, 509 (1957), doi:10.1029/JZ062i004p00509.
http://dx.doi.org/10.1029/JZ062i004p00509
11.
11. G. Lapenta and A. Lazarian, Nonlinear Processes Geophys. 19, 251 (2012).
http://dx.doi.org/10.5194/npg-19-251-2012
12.
12. A. H. Boozer, Phys. Plasmas 19, 092902 (2012).
http://dx.doi.org/10.1063/1.4754715
13.
13. A. H. Boozer, Phys. Plasmas 19, 112901 (2012).
http://dx.doi.org/10.1063/1.4765352
14.
14. A. H. Boozer, Plasma Phys. Controlled Fusion 52, 124002 (2010).
http://dx.doi.org/10.1088/0741-3335/52/12/124002
15.
15. T. I. Gombosi, K. G. Powell, D. L. Zeeuw, C. R. Clauer, K. C. Hansen, W. B. Manchester, A. J. Ridley, I. I. Roussev, I. V. Sokolov, Q. F. Stout, and G. Toth, Comput. Sci. Eng. 6, 14 (2004).
http://dx.doi.org/10.1109/MCISE.2004.1267603
16.
16. K. A. Sorathia, C. S. Reynolds, J. M. Stone, and K. Beckwit, Astrophys. J. 749, 189 (2012).
http://dx.doi.org/10.1088/0004-637X/749/2/189
17.
17. T. Bountis and H. Skokas, Complex Hamiltonian Dynamics (Springer-Verlag, Berlin, 2012).
18.
18. J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.44
19.
19. A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.38
20.
20. E. R. Priest and P. Démoulin, J. Geophys. Res. 100(A12 ), 23443 (1995), doi:10.1029/95JA02740.
http://dx.doi.org/10.1029/95JA02740
21.
21. E. N. Parker, Spontaneous Current Sheets in Magnetic Fields (Oxford University Press, New York, 1994).
22.
22. Å. M. Janse, B. C. Low, and E. N. Parker, Phys. Plasmas 17, 092901 (2010).
http://dx.doi.org/10.1063/1.3474943
23.
23. A. H. Boozer, Rev. Mod. Phys. 76(4 ), 1071 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.1071
24.
24. C. E. Shannon, Bell Syst. Techn. J. 27(4), 623 (1948).
25.
25. A. Kolmogorov, Theor. Comput. Sci. 207, 387 (1998).
http://dx.doi.org/10.1016/S0304-3975(98)00075-9
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4796051
Loading
/content/aip/journal/pop/20/3/10.1063/1.4796051
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/3/10.1063/1.4796051
2013-03-26
2014-08-21

Abstract

Maxwell's equations imply that exponentially smaller non-ideal effects than commonly assumed can give rapid magnetic reconnection in space and astrophysical plasmas. In an ideal evolution, magnetic field lines act as stretchable strings, which can become ever more entangled but cannot be cut. High entanglement makes the lines exponentially sensitive to small non-ideal changes in the magnetic field. The cause is well known in popular culture as the butterfly effect and in the theory of deterministic dynamical systems as a sensitive dependence on initial conditions, but the importance to magnetic reconnection is not generally recognized. Two-coordinate models are too constrained geometrically for the required entanglement, but otherwise the effect is general and can be studied in simple models. A simple model is introduced, which is periodic in the x and y Cartesian coordinates and bounded by perfectly conducting planes in z. Starting from a constant magnetic field in the z direction, reconnection is driven by a spatially smooth, bounded force. The model is complete and could be used to study the impulsive transfer of energy between the magnetic field and the ions and electrons using a kinetic plasma model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/3/1.4796051.html;jsessionid=2vpahsprkocpq.x-aip-live-06?itemId=/content/aip/journal/pop/20/3/10.1063/1.4796051&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Model of magnetic reconnection in space and astrophysical plasmas
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4796051
10.1063/1.4796051
SEARCH_EXPAND_ITEM