1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/3/10.1063/1.4798392
1.
1. B. G. Hong, W. Horton, and D.-I. Choi, Plasma Phys. Controlled Fusion 31, 1291 (1989).
http://dx.doi.org/10.1088/0741-3335/31/8/006
2.
2. J. Weiland and A. Hirose, Nucl. Fusion 32, 151 (1992).
http://dx.doi.org/10.1088/0029-5515/32/1/I13
3.
3. M. S. Chu, C. Chu, G. Guest, J. Y. Hsu, and T. Ohkawa, Phys. Rev. Lett. 41, 247 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.247
4.
4. C. Bourdelle, W. Dorland, X. Garbet et al., Phys. Plasmas 10, 2881 (2003).
http://dx.doi.org/10.1063/1.1585032
5.
5. M. J. Pueschel, M. Kammerer, and F. Jenko, Phys. Plasmas 15, 102310 (2008).
http://dx.doi.org/10.1063/1.3005380
6.
6. E. Wang, X. Xu, J. Candy et al., Nucl. Fusion 52, 103015 (2012).
http://dx.doi.org/10.1088/0029-5515/52/10/103015
7.
7. Y. Chen and S. E. Parker, J. Comput. Phys. 189, 463475 (2003).
http://dx.doi.org/10.1016/S0021-9991(03)00228-6
8.
8. I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, Phys. Plasmas 16, 122307 (2009).
http://dx.doi.org/10.1063/1.3273070
9.
9. A. Bottino, B. Scott, S. Brunner et al., IEEE Trans. Plasma Sci. 38, 2129 (2010).
http://dx.doi.org/10.1109/TPS.2010.2055583
10.
10. Z. Lin and L. Chen, Phys. Plasmas 8, 1447 (2001).
http://dx.doi.org/10.1063/1.1356438
11.
11. Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 (1998).
http://dx.doi.org/10.1126/science.281.5384.1835
12.
12. D. J. Liu and L. Chen, Plasma Phys. Controlled Fusion 53, 062002 (2011).
http://dx.doi.org/10.1088/0741-3335/53/6/062002
13.
13. J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003).
http://dx.doi.org/10.1016/S0021-9991(03)00079-2
14.
14. R. Hatzky, A. Konies, and A. Mishchenko, J. Comput. Phys. 225, 568590 (2007).
http://dx.doi.org/10.1016/j.jcp.2006.12.019
15.
15. Z. Lin, Y. Nishimura, Y. Xiao, I. Holod, W. L. Zhang, and L. Chen, Plasma Phys. Controlled Fusion 49, B163 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S15
16.
16. I. Holod, Z. Lin, and Y. Xiao, Phys. Plasmas 19, 012314 (2012).
http://dx.doi.org/10.1063/1.3677886
17.
17. W. Zhang, Z. Lin, and L. Chen, Phys. Rev. Lett. 101, 095001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.095001
18.
18. W. L. Zhang, I. Holod, Z. Lin, and Y. Xiao, Phys. Plasmas 19, 022507 (2012).
http://dx.doi.org/10.1063/1.3685703
19.
19. W. Deng, Z. Lin, I. Holod, Z. Wang, Y. Xiao, and H. Zhang, Nucl. Fusion 52, 043006 (2012).
http://dx.doi.org/10.1088/0029-5515/52/4/043006
20.
20. D. A. Spong et al., Phys. Plasmas 19, 082511 (2012).
http://dx.doi.org/10.1063/1.4747505
21.
21. H. S. Zhang, Z. Lin, and I. Holod, Phys. Rev. Lett. 109, 025001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.025001
22.
22. Z. Li, G. Sun, I. Holod, Y. Xiao, W. Zhang, and Z. Lin, “ GTC simulation of ideal ballooning mode in tokamak plasmas,” Plasma Sci. Technol. (in press).
23.
23. G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994).
http://dx.doi.org/10.1063/1.870745
24.
24. A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.421
25.
25. W. Deng, Z. Lin, and I. Holod, Nucl. Fusion 52, 023005 (2012).
http://dx.doi.org/10.1088/0029-5515/52/2/023005
26.
26. W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z. Lin, Phys. Plasmas 8, 4435 (2001).
http://dx.doi.org/10.1063/1.1400124
27.
27. W. W. Lee, J. Comput. Phys. 72, 243 (1987).
http://dx.doi.org/10.1016/0021-9991(87)90080-5
28.
28. A. M. Dimits, G. Bateman, M. A. Beer et al., Phys. Plasmas 7, 969 (2000).
http://dx.doi.org/10.1063/1.873896
29.
29. G. Rewoldt, Z. Lin, and Y. Idomura, Comput. Phys. Commun. 177, 775 (2007).
http://dx.doi.org/10.1016/j.cpc.2007.06.017
30.
30. Y. Xiao and Z. Lin, Phys. Rev. Lett. 103, 085004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.085004
31.
31. J. Q. Dong, S. M. Mahajan, and W. Horton, Phys. Plasmas 4, 755 (1997).
http://dx.doi.org/10.1063/1.872169
32.
32. J. Candy, Phys. Plasmas 12, 072307 (2005).
http://dx.doi.org/10.1063/1.1954123
33.
33. C. S. Chang and S. H. Ku (private communication).
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4798392
Loading
/content/aip/journal/pop/20/3/10.1063/1.4798392
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/3/10.1063/1.4798392
2013-03-26
2014-07-24

Abstract

The fluid-kinetic hybrid electron model is verified in global gyrokinetic particle simulation of linear electromagnetic drift-Alfvénic instabilities in tokamak. In particular, we have recovered the β-stabilization of the ion temperature gradient mode, transition to collisionless trapped electron mode, and the onset of kinetic ballooning mode as (ratio of electron kinetic pressure to magnetic pressure) increases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/3/1.4798392.html;jsessionid=2m2nb7f5q7usc.x-aip-live-02?itemId=/content/aip/journal/pop/20/3/10.1063/1.4798392&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/3/10.1063/1.4798392
10.1063/1.4798392
SEARCH_EXPAND_ITEM