Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. R. Priest and T. Forbes, Magnetic Reconnection, MHD Theory and Applications (Cambridge University Press, 2000).
2. J. Birn and E. R. Priest, Reconnection of Magnetic Fields, Magnetohydrodynamics and Collisionless Theory and Observations (Cambridge University Press, 2007).
3. M. Yamada, R. Kulsrud, and H. Ji, Rev. Mod. Phys. 82, 603664 (2010).
4. J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, “ Geospace environmental modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res. 106, 37153720, doi:10.1029/1999JA900449 (2001).
5. M. A. Shay, J. F. Drake, and M. Swisdak, “ Two-scale structure of the electron dissipation region during collisionless magnetic reconnection,” Phys. Rev. Lett. 99, 155002 (2007).
6. M. A. Shay and J. F. Drake, “ The role of electron dissipation on the rate of collisionless magnetic reconnection,” Geophys. Res. Lett. 25, 37593762, doi:10.1029/1998GL900036 (1998).
7. M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, “ Alfvénic collisionless magnetic reconnection and the Hall term,” J. Geophys. Res. 106, 37593772, doi:10.1029/1999JA001007 (2001).
8. M. E. Mandt, R. E. Denton, and J. F. Drake, “ Transition to whistler mediated magnetic reconnection,” Geophys. Res. Lett. 21, 7376, doi:10.1029/93GL03382 (1994).
9. B. N. Rogers, R. E. Denton, J. F. Drake, and M. A. Shay, “ Role of dispersive waves in collisionless magnetic reconnection,” Phys. Rev. Lett. 87, 195004 (2001).
10. J. F. Drake, M. A. Shay, and M. Swisdak, “ The Hall fields and fast magnetic reconnection,” Phys. Plasmas 15, 042306 (2008).
11. E. N. Parker, “ Sweet's mechanism for merging magnetic fields in conducting fluids,” J. Geophys. Res. 62, 509520, doi:10.1029/JZ062i004p00509 (1957).
12. W. Daughton, J. Scudder, and H. Karimabadi, Phys. Plasmas 13, 072101 (2006).
13. H. Karimabadi, W. Daughton, and J. Scudder, “ Multi-scale structure of the electron diffusion region,” Geophys. Res. Lett. 34, 13104 (2007).
14. J. Birn and M. Hesse, “ Geospace environment modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and hall effects,” J. Geophys. Res. 106, 37373750, doi:10.1029/1999JA001001 (2001).
15. M. Hesse, K. Schindler, J. Birn, and M. Kuznetsova, “ The diffusion region in collisionless magnetic reconnection,” Phys. Plasmas 6, 17811795 (1999).
16. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, and S. Zenitani, “ The diffusion region in collisionless magnetic reconnection,” Space Sci. Rev. 160, 3 (2011).
17. P. L. Pritchett, “ Collisionless magnetic reconnection in an asymmetric current sheet,” J. Geophys. Res. 113, 6210, doi:10.1029/2007JA012930 (2008).
18. P. L. Pritchett and F. S. Mozer, “ Asymmetric magnetic reconnection in the presence of a guide field,” J. Geophys. Res. 114, 11210, doi:10.1029/2009JA014343 (2009).
19. P. L. Pritchett and F. S. Mozer, “ The magnetic field reconnection site and dissipation region,” Phys. Plasmas 16, 080702 (2009).
20. K. G. Tanaka, A. Retinò, Y. Asano, M. Fujimoto, I. Shinohara, A. Vaivads, Y. Khotyaintsev, M. André, M. B. Bavassano Cattaneo, S. C. Buchert, and C. J. Owen, “ Effects on magnetic reconnection of a density asymmetry across the current sheet,” Ann. Geophys. 26, 24712483 (2008).
21. M. Swisdak, B. N. Rogers, J. F. Drake, and M. A. Shay, “ Diamagnetic suppression of component magnetic reconnection at the magnetopause,” J. Geophys. Res., [Space Phys.] 108, 1218, doi: 10.1029/2002JA009726 (2003).
22. M. Nakamura and M. Scholer, “ Structure of the magnetopause reconnection layer and of flux transfer events: Ion kinetic effects,” J. Geophys. Res. 105, 2317923192, doi:10.1029/2000JA900101 (2000).
23. Y. Lin and H. Xie, “ Formation of reconnection layer at the dayside magnetopause,” Geophys. Res. Lett. 24, 31453148, doi:10.1029/97GL03278 (1997).
24. F. S. Mozer and P. L. Pritchett, “ Electron physics of asymmetric magnetic field reconnection,” Space Sci. Rev. 158, 119143 (2011).
25. K. Malakit, M. A. Shay, P. A. Cassak, and C. Bard, “ Scaling of asymmetric magnetic reconnection: Kinetic particle-in-cell simulations,” J. Geophys. Res. 115, 10223 (2010).
26. N. Aunai, M. Hesse, S. Zenitani, M. Kuznetsova, C. Black, R. Evans, and R. Smets, Phys. Plasmas 20, 022902 (2013).
27. C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (, 2004).
28. D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, 2005).
29. D. Biskamp and E. Schwarz, “ Localization, the clue to fast magnetic reconnection,” Phys. Plasmas 8, 47294731 (2001).
30. P. A. Cassak and M. A. Shay, “ Scaling of asymmetric Hall magnetic reconnection,” Geophys. Res. Lett. 35, 19102 (2008).
31. K. Arzner and M. Scholer, “ Kinetic structure of the post plasmoid plasma sheet during magnetotail reconnection,” J. Geophys. Res. 106, 38273844, doi:10.1029/2000JA000179 (2001).
32. R.-F. Lottermoser, M. Scholer, and A. P. Matthews, “ Ion kinetic effects in magnetic reconnection: Hybrid simulations,” J. Geophys. Res. 103, 45474560, doi:10.1029/97JA01872 (1998).
33. M. A. Shay, J. F. Drake, R. E. Denton, and D. Biskamp, “ Structure of the dissipation region during collisionless magnetic reconnection,” J. Geophys. Res. 103, 91659176, doi:10.1029/97JA03528 (1998).
34. J. F. Drake, M. Swisdak, T. D. Phan, P. A. Cassak, M. A. Shay, S. T. Lepri, R. P. Lin, E. Quataert, and T. H. Zurbuchen, “ Ion heating resulting from pickup in magnetic reconnection exhausts,” J. Geophys. Res. 114, 05111, doi:10.1029/2008JA013701 (2009).
35. K. Malakit, P. A. Cassak, M. A. Shay, and J. F. Drake, “ The hall effect in magnetic reconnection: Hybrid versus Hall-less hybrid simulations,” Geophys. Res. Lett. 36, 07107 (2009).
36. S. Zenitani, M. Hesse, A. Klimas, and M. Kuznetsova, “ New measure of the dissipation region in collisionless magnetic reconnection,” Phys. Rev. Lett. 106, 195003 (2011).
37. G. Belmont, N. Aunai, and R. Smets, Phys. Plasmas 19, 022108 (2012).
38. A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, “ Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability,” Phys. Plasmas 16, 112102 (2009).
39. J. P. Eastwood, T.-D. Phan, F. S. Mozer, M. A. Shay, M. Fujimoto, A. Retinò, M. Hesse, A. Balogh, E. A. Lucek, and I. Dandouras, “ Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection,” J. Geophys. Res. 112, 06235, doi:10.1029/2006JA012158 (2007).
40. L.-J. Chen, A. Bhattacharjee, P. A. Puhl-Quinn, H. Yang, N. Bessho, S. Imada, S. Mühlbachler, P. W. Daly, B. Lefebvre, Y. Khotyaintsev, A. Vaivads, A. Fazakerley, and E. Georgescu, “ Observation of energetic electrons within magnetic islands,” Nat. Phys. 4, 1923 (2008).
41. B. P. Sullivan, A. Bhattacharjee, and Y.-M. Huang, “ Extension of the electron dissipation region in collisionless Hall magnetohydrodynamics reconnection,” Phys. Plasmas 16, 102111 (2009).

Data & Media loading...


Article metrics loading...



Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer from elongating and forming plasmoids.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd