1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Injection and transport properties of fast electrons in ultraintense laser-solid interactions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/4/10.1063/1.4799726
1.
1. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 16261634 (1994).
http://dx.doi.org/10.1063/1.870664
2.
2. H. Schwoerer, P. Gibbon, S. Düsterer, R. Behrens, C. Ziener, C. Reich, and R. Sauerbrey, Phys. Rev. Lett. 86, 23172320 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2317
3.
3. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. Mackinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).
http://dx.doi.org/10.1063/1.1333697
4.
4. A. R. Bell and R. J. Kingham, Phys. Rev. Lett. 91, 035003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.035003
5.
5. J. J. Honrubia and J. Meyer ter Vehn, Plasma Phys. Controlled Fusion 51, 014008 (2009).
http://dx.doi.org/10.1088/0741-3335/51/1/014008
6.
6. L. Gremillet, F. Amiranoff, S. D. Baton, J.-C. Gauthier, M. Koenig, E. Martinolli, F. Pisani, G. Bonnaud, C. Lebourg, C. Rousseaux, C. Toupin, A. Antonicci, D. Batani, A. Bernardinello, T. Hall, D. Scott, P. Norreys, H. Bandulet, and H. Pépin, Phys. Rev. Lett. 83, 50155018 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.5015
7.
7. M. Borghesi, A. J. Mackinnon, A. R. Bell, G. Malka, C. Vickers, O. Willi, J. R. Davies, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 83, 43094312 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4309
8.
8. K. L. Lancaster, J. S. Green, D. S. Hey, K. U. Akli, J. R. Davies, R. J. Clarke, R. R. Freeman, H. Habara, M. H. Key, R. Kodama, K. Krushelnick, C. D. Murphy, M. Nakatsutsumi, P. Simpson, R. Stephens, C. Stoeckl, T. Yabuuchi, M. Zepf, and P. A. Norreys, Phys. Rev. Lett. 98, 125002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.125002
9.
9. J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote, M. H. Key, J. A. King, K. L. Lancaster, N. C. Lopes, T. Ma, A. J. MacKinnon, K. Markey, A. McPhee, Z. Najmudin, P. Nilson, R. Onofrei, R. Stephens, K. Takeda, K. A. Tanaka, W. Theobald, T. Tanimoto, J. Waugh, L. Van Woerkom, N. C. Woolsey, M. Zepf, J. R. Davies, and P. A. Norreys, Phys. Rev. Lett. 100, 015003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015003
10.
10. V. M. Ovchinnikov, D. W. Schumacher, M. McMahon, E. A. Chowdhury, C. D. Chen, A. Morace and R. R. Freeman, Phys. Rev. Lett. 110, 065007 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.065007
11.
11. R. H. H. Scott, F. Perez, J. J. Santos, C. P. Ridgers, J. R. Davies, K. L. Lancaster, S. D. Baton, Ph. Nicolaï, R. M. G. M. Trines, A. R. Bell, S. Hulin, M. Tzoufras, S. J. Rose, and P. A. Norreys, Phys. Plasmas 19, 053104 (2012).
http://dx.doi.org/10.1063/1.4714615
12.
12. J. R. Davies, A. R. Bell, and M. Tatarakis, Phys. Rev. E 59, 6032 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.6032
13.
13. A. A. Solodov, M. Storm, J. F. Myatt, R. Betti, D. D. Meyerhofer, P. M. Nilson, W. Theobald, and C. Stoeckl, J. Phys.: Conf. Ser. 244, 022063 (2010).
http://dx.doi.org/10.1088/1742-6596/244/2/022063
14.
14. X. H. Yuan, A. P. L. Robinson, M. N. Quinn, D. C. Carroll, M. Borghesi, R. J. Clarke, R. G. Evans, J. Fuchs, P. Gallegos, L. Lancia, D. Neely, K. Quinn, L. Romagnani, G. Sarri, P. A. Wilson, and P. McKenna, New J. Phys. 12, 063018 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/063018
15.
15. A. P. L. Robinson and M. Sherlock, Phys. Plasmas 14, 083105 (2007).
http://dx.doi.org/10.1063/1.2768317
16.
16. A. P. L. Robinson, M. Sherlock, and P. A. Norreys, Phys. Rev. Lett. 100, 025002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.025002
17.
17. S. Kar, A. P. L. Robinson, D. C. Carroll, O. Lundh, K. Markey, P. McKenna, P. Norreys, and M. Zepf, Phys. Rev. Lett. 102, 055001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.055001
18.
18. B. Ramakrishna, S. Kar, A. P. L. Robinson, D. J. Adams, K. Markey, M. N. Quinn, X. H. Yuan, P. McKenna, K. L. Lancaster, J. S. Green, R. H. H. Scott, P. A. Norreys, J. Schreiber, and M. Zepf, Phys. Rev. Lett. 105, 135001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.135001
19.
19. A. P. L. Robinson, M. H. Key, and M. Tabak, Phys. Rev. Lett. 108, 125004 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.125004
20.
20. R. H. H. Scott, C. Beaucourt, H.-P. Schlenvoigt, K. Markey, K. L. Lancaster, C. P. Ridgers, C. M. Brenner, J. Pasley, R. J. Gray, I. O. Musgrave, A. P. L. Robinson, K. Li, M. M. Notley, J. R. Davies, S. D. Baton, J. J. Santos, J.-L. Feugeas, Ph. Nicolaï, G. Malka, V. T. Tikhonchuk, P. McKenna, D. Neely, S. J. Rose, and P. A. Norreys, Phys. Rev. Lett. 109, 015001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.015001
21.
21. P. McKenna, D. C. Carroll, R. J. Clarke, R. G. Evans, K. W. D. Ledingham, F. Lindau, O. Lundh, T. McCanny, D. Neely, A. P. L. Robinson, L. Robson, P. T. Simpson, C.-G. Wahlström, and M. Zepf, Phys. Rev. Lett. 98, 145001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.145001
22.
22. M. N. Quinn, X. H. Yuan, X. X. Lin, D. C. Carroll, O. Tresca, R. J. Gray, M. Coury, C. Li, Y. T. Li, C. M. Brenner, A. P. L. Robinson, D. Neely, B. Zielbauer, B. Aurand, J. Fils, T. Kuehl, and P. McKenna, Plasma Phys. Controlled Fusion 53, 025007 (2011).
http://dx.doi.org/10.1088/0741-3335/53/2/025007
23.
23. J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. Da Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, and W. Hsing, Appl. Opt. 37, 17841795 (1998).
http://dx.doi.org/10.1364/AO.37.001784
24.
24. J. A. King, K. Akli, B. Zhang, R. R. Freeman, M. H. Key, C. D. Chen, S. P. Hatchett, J. A. Koch, A. J. MacKinnon, P. K. Patel, R. Snavely, R. P. J. Town, M. Borghesi, L. Romagnani, M. Zepf, T. Cowan, H. Habara, R. Kodama, Y. Toyama, S. Karsch, K. Lancaster, C. Murphy, and P. Norreys, Appl. Phys. Lett. 86, 191501 (2005).
http://dx.doi.org/10.1063/1.1923178
25.
25. F. Nürnberg, M. Schollmeier, E. Brambrink, A. Blažević, D. C. Carroll, K. Flippo, D. C. Gautier, M. Geißel, K. Harres, B. M. Hegelich, O. Lundh, K. Markey, P. McKenna, D. Neely, J. Schreiber, and M. Roth, Rev. Sci. Instrum. 80, 033301 (2009).
http://dx.doi.org/10.1063/1.3086424
26.
26. P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.185002
27.
27. S. C. Wilks and W. L. Kruer, IEEE J. Quantum Electron 33, 19541968 (1997).
http://dx.doi.org/10.1109/3.641310
28.
28. J. R. Davies, Plasma Phys. Controlled Fusion 51, 014006 (2009).
http://dx.doi.org/10.1088/0741-3335/51/1/014006
29.
29. P. McKenna, D. C. Carroll, O. Lundh, F. Nürnberg, K. Markey, S. Bandyopadhyay, D. Batani, R. G. Evans, R. Jafer, S. Kara, D. Neely, D. Pepler, M. N. Quinn, R. Redaelli, M. Roth, C.-G. Wahlström, X. H. Yuan, and M. Zepf, Laser Part. Beams 26, 591596 (2008).
http://dx.doi.org/10.1017/S0263034608000657
30.
30. P. McKenna, A. P. L. Robinson, D. Neely, M. P. Desjarlais, D. C. Carroll, M. N. Quinn, X. H. Yuan, C. M. Brenner, M. Bursa, M. Coury, P. Gallegos, R. J. Gray, K. L. Lancaster, Y. T. Li, X. X. Lin, O. Tresca, and C.-G. Wahlström, Phys. Rev. Lett. 106, 185004 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.185004
31.
31. C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, Phys. Rev. Lett. 74, 24392442 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2439
32.
32. J. R. Davies, Phys. Rev. E 65, 026407 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.026407
33.
33. H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More, Phys. Rev. Lett. 61, 23642367 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2364
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/4/10.1063/1.4799726
Loading
/content/aip/journal/pop/20/4/10.1063/1.4799726
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/4/10.1063/1.4799726
2013-04-05
2014-11-28

Abstract

Fast electron injection and transport in solid foils irradiated by sub-picosecond-duration laser pulses with peak intensity equal to is investigated experimentally and via 3D simulations. The simulations are performed using a hybrid-particle-in-cell (PIC) code for a range of fast electron beam injection conditions, with and without inclusion of self-generated resistive magnetic fields. The resulting fast electron beam transport properties are used in rear-surface plasma expansion calculations to compare with measurements of proton acceleration, as a function of target thickness. An injection half-angle of is inferred, which is significantly larger than that derived from previous experiments under similar conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/4/1.4799726.html;jsessionid=3t66gcvaresbb.x-aip-live-03?itemId=/content/aip/journal/pop/20/4/10.1063/1.4799726&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Injection and transport properties of fast electrons in ultraintense laser-solid interactions
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/4/10.1063/1.4799726
10.1063/1.4799726
SEARCH_EXPAND_ITEM