1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Cold atmospheric plasma in cancer therapya)
a)Paper PI2 5, Bull. Am. Phys. Soc. 57, 243 (2012).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/5/10.1063/1.4801516
1.
1. Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology, edited by M. Laroussi, M. Kong, G. Morfill, and W. Stolz (Cambridge, 2012).
2.
2. E. Stoffels, I. E. Kieft, R. E. J. Sladek, L. J. M. van den Bedem, E. P. van der Laan, and M. Steinbuch, “Plasma needle for in vivo medical treatment: Recent developments and perspectives,” Plasma Sources Sci. Technol. 15, S169S180 (2006).
http://dx.doi.org/10.1088/0963-0252/15/4/S03
3.
3. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, “Applied plasma medicine,” Plasma Processes Polym. 5, 503 (2008).
http://dx.doi.org/10.1002/ppap.200700154
4.
4.See http://usmedinnovations.com for Argon Plasma Coagulator application in medicine.
5.
5. J. Canady, K. Wiley, and B. Ravo, “Argon plasma coagulation and the future applications for dual-mode endoscopic probes,” Rev. Gastroenterological Disord. 6, 1 (2006).
6.
6. E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. M. W. Kroesen, “Plasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio)materials,” Plasma Source Sci. Technol. 11, 383 (2002).
http://dx.doi.org/10.1088/0963-0252/11/4/304
7.
7. M. Laroussi and X. Lu, “Room-temperature atmospheric pressure plasma plume for biomedical applications,” Appl. Phys. Lett. 87, 113902 (2005).
http://dx.doi.org/10.1063/1.2045549
8.
8. M. Laroussi, W. Hynes, T. Akan, X. Lu, and C. Tendero, “The plasma pencil: A source of hypersonic cold plasma bullets for biomedical applications,” IEEE Trans. Plasma Sci. 36, 1298 (2008).
http://dx.doi.org/10.1109/TPS.2008.922432
9.
9. X. Lu, Z. Jiang, Q. Xiong, Z. Tang, and Y. Pan, “A single electrode room-temperature plasma jet device for biomedical applications,” Appl. Phys. Lett. 92, 151504 (2008).
http://dx.doi.org/10.1063/1.2912524
10.
10. X. Lu, Z. Jiang, Q. Xiong, Z. Tang, X. Hu, and Y. Pan, “An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine,” Appl. Phys. Lett. 92, 081502 (2008).
http://dx.doi.org/10.1063/1.2883945
11.
11. J. F. Kolb, A. A. H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, M. Stacey, and K. H. Schoenbach, “Cold atmospheric pressure air plasma jet for medical applications,” Appl. Phys. Lett. 92, 241501 (2008).
http://dx.doi.org/10.1063/1.2940325
12.
12. G. Fridman, A. Shereshevsky, M. Peddinghaus, A. Gutsol, V. Vasilets, A. Brooks, M. Balasubramanian, G. Friedman, and A. Fridman, “Bio-medical applications of non-thermal atmospheric pressure plasma,” in 37th AIAA Plasma dynamics and Lasers Conference, San Francisco, California, 5–8 June, 2006, AIAA-2006-2902.
13.
13. G. Fridman, D. Dobrynin, S. Kalghatgi, A. Brooks, G. Friedman, A. Fridman, “Physical and biological mechanisms of plasma interaction with living tissue,” in 36th International Conference Plasma Science, San Diego, May 30–June 5, 2009.
14.
14. X. Yan, Z. Xiong, F. Zou, S. Zhao, X. Lu, G. Yang, G. He, and K. Ostrikov, “Plasma-induced death of HepG2 cancer cells: intracellular effects of reactive species,” Plasma Processes Polym. 9, 5966 (2012).
http://dx.doi.org/10.1002/ppap.201100031
15.
15. X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. K. Chu, and Y. Pan, J. Phys. D: Appl. Phys. 45, 165205 (2012).
http://dx.doi.org/10.1088/0022-3727/45/16/165205
16.
16. S. Kalghatgi, A. Fridman, G. Friedman, and A. Morss-Clyne, “Non-thermal plasma enhances endothelial cell proliferation through fibroblast growth factor-2 release,” in 36th International Conference Plasma Science, San Diego, May 30–June 5, 2009.
17.
17. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, “Plasma medicine. An introductory review,” New J. Phys. 11, 115012 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/115012
18.
18. G. E. Morfill, M. G. Kong, and J. L. Zimmermann, “Focus on plasma medicine. Review,” New J. Phys. 11, 115011 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/115011
19.
19. E. Stoffels, Y. Sakiyama, and D. B. Graves, “Cold atmospheric plasma: Charged species and their interactions with cells and tissues,” IEEE Trans. Plasma Sci. 36(4), 1441 (2008).
http://dx.doi.org/10.1109/TPS.2008.2001084
20.
20. N. Barekzi and M. Laroussi, J. Phys. D: Appl. Phys. 45, 422002 (2012).
http://dx.doi.org/10.1088/0022-3727/45/42/422002
21.
21. N. Georgescu and A. R. Lupu, “Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets,” IEEE Trans. Plasma Sci. 38, 1 (2010).
http://dx.doi.org/10.1109/TPS.2009.2035624
22.
22. J. L. Zirnheld, S. N. Zucker, T. M. DiSanto, R. Berezney, and K. Etemadi, “Nonthermal plasma needle: Development and targeting of melanoma cells,” IEEE Trans. Plasma Sci. 38, 948 (2010).
http://dx.doi.org/10.1109/TPS.2010.2041470
23.
23. A. Shashurin, M. Keidar, S. Bronnikov, R. A. Jurjus, and M. A. Stepp, Appl. Phys. Lett. 92, 181501 (2008).
http://dx.doi.org/10.1063/1.3020223
24.
24. O. Volotskova, M. A. Stepp, and M. Keidar, “Integrin activation by a cold atmospheric plasma jet,” New J. Phys. 14, 053019 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/053019
25.
25. M. Vandamme, E. Robert, S. Pesnel, E. Barbosa, S. Dozias, J. Sobilo, S. Lerondel, A. Le Pape, and J. M. Pouvesle, “Antitumor effect of plasma treatment on U87 glioma xenografts: Preliminary results,” Plasma Processes Polym. 7, 264 (2010).
http://dx.doi.org/10.1002/ppap.200900080
26.
26. M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, and B. Trink, “Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy,” Br. J. Cancer 105, 1295 (2011).
http://dx.doi.org/10.1038/bjc.2011.386
27.
27. M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J.-M. Pouvesle, and A. Le Pape, “ROS implication in a new antitumor strategy based on non-thermal plasma,” Int. J. Cancer 130, 2185 (2011).
http://dx.doi.org/10.1002/ijc.26252
28.
28. G. Isbary, G. Morfill, H.-U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl, and W. Stolz, “A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma onchronic wounds in patients,” Br. J. Dermatol. 163, 78 (2010).
29.
29. K. Kim, J. D. Choi, Y. C. Hong, G. Kim, F. J. Noh, J.-S. Lee, and S. S. Yang, “Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy,” Appl. Phys. Lett. 98, 073701 (2011).
http://dx.doi.org/10.1063/1.3555434
30.
30. G. E. Morfill1, T. Shimizu, B. Steffes, and H.-U. Schmidt, “Nosocomial infections—A new approach towards preventive medicine using plasmas,” New Journal of Physics 11, 115019 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/115019
31.
31. W. J. M. Brok, M. D. Bowden, J. van Dijk, J. J. A. M. van der Mullen, and G. M. W. Kroesen, “Numerical description of discharge characteristics of the plasma needle,” J. Appl. Phys. 98, 013302 (2005).
http://dx.doi.org/10.1063/1.1944218
32.
32. Y. Sakiyama and D. B. Graves, “Finite element analysis of an atmospheric pressure RF-excited plasma needle,” J. Phys. D, Appl. Phys. 39, 3451 (2006).
http://dx.doi.org/10.1088/0022-3727/39/16/S01
33.
33. Y. Sakiyama and D. B. Graves, “Nonthermal atmospheric rf plasma in one-dimensional spherical coordinates: Asymmetric sheath structure and the discharge mechanism,” J. Appl. Phys. 101, 073306 (2007).
http://dx.doi.org/10.1063/1.2715745
34.
34. F. Shi, D. Wang, and C. Ren, “Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases,” Phys. Plasmas 15, 063503 (2008).
http://dx.doi.org/10.1063/1.2927437
35.
35. Y. J. Hong, S. M. Lee, G. C. Kim, and J. K. Lee, “Modeling high-pressure microplasmas: Comparison of fluid modeling and particle-in-cell Monte Carlo collision modeling,” Plasma Processes Polym. 5, 583 (2008).
http://dx.doi.org/10.1002/ppap.200800024
36.
36. F. Iza, J. Walsh, and M. G. Kong, “From sub-microsecond to nanosecond pulsed atmospheric-pressure plasmas,” IEEE Trans. Plasma Sci. 37(7), 1289 (2009).
http://dx.doi.org/10.1109/TPS.2009.2014766
37.
37. Z. Xiong, E. Robert, V. Sarron, J.-M. Pouvesle, and M. J. Kushner, “Dynamics of ionization wave splitting and merging of atmospheric pressure plasmas in branched dielectric tubes and channels,” J. Phys. D 45, 275201 (2012).
http://dx.doi.org/10.1088/0022-3727/45/27/275201
38.
38. Z. Xiong and M. J. Kushner, “Atmospheric pressure ionization waves propagating through a flexible capillary channel and impinging upon a target,” Plasma Sources Sci. Technol. 21, 034001 (2012).
http://dx.doi.org/10.1088/0963-0252/21/3/034001
39.
39. A. Shashurin, M. N. Shneider, A. Dogariu, R. B. Miles, and M. Keidar, Appl. Phys. Lett. 94, 231504 (2009).
http://dx.doi.org/10.1063/1.3153143
40.
40. A. Shashurin, M. N. Shneider, A. Dogariu, R. B. Miles, and M. Keidar, Appl. Phys. Lett. 96, 171502 (2010).
http://dx.doi.org/10.1063/1.3389496
41.
41. X. Lu and M. Laroussi, “Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses,” J. Appl. Phys. 100, 063302 (2006).
http://dx.doi.org/10.1063/1.2349475
42.
42. B. L. Sands, B. N. Ganguly, and K. Tachibana, Appl. Phys. Lett. 92, 151503 (2008).
http://dx.doi.org/10.1063/1.2909084
43.
43. R. Ye and W. Zheng, Appl. Phys. Lett. 93, 071502 (2008).
http://dx.doi.org/10.1063/1.2972119
44.
44. N. Mericam-Bourdet, M. Laroussi, A. Begum, and E. Karakas, J. Phys. D: Appl. Phys. 42, 055207 (2009).
http://dx.doi.org/10.1088/0022-3727/42/5/055207
45.
45. A. Shashurin, M. N. Shneider, and M. Keidar, “Measurements of streamer head potential and conductivity of streamer column in cold nonequilibrium atmospheric plasmas,” Plasma Sources Sci. Technol. 21, 034006 (2012);
http://dx.doi.org/10.1088/0963-0252/21/3/034006
45. A. Shashurin, M. N. Shneider, and M. Keidar, “Erratum,” Plasma Sources Sci. Technol. 21, 049601 (2012).
http://dx.doi.org/10.1088/0963-0252/21/4/049601
46.
46. O. Volotskova, A. Shashurin, M. A. Stepp, S. Pal-Ghosh, and M. Keidar, “Plasma-controlled cell migration: Localization of cold plasma-cell interaction region,” Plasma Med. 1, 85 (2010).
http://dx.doi.org/10.1615/PlasmaMed.v1.i1.70
47.
47. M. N. Shneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98, 033301 (2005).
http://dx.doi.org/10.1063/1.1996835
48.
48. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys Rev. Lett. 98, 265005 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.265005
49.
49. Z. Zhang, M. N. Shneider, and R. B. Miles, “Microwave diagnostics of laser-induced avalanche ionization in air,” J. Appl. Phys. 100, 074912 (2006).
http://dx.doi.org/10.1063/1.2356792
50.
50. Y. P. Raizer, G. M. Milikh, M. N. Shneider, and S. V. Novakovski, J. Phys. D: Appl.Phys. 31, 3255 (1998).
http://dx.doi.org/10.1088/0022-3727/31/22/014
51.
51. O. Volotskova, T. S. Hawley, M. A. Stepp, and M. Keidar, “Targeting the cancer cell cycle by cold atmospheric plasma,” Sci. Rep. 2, 636 (2012).
http://dx.doi.org/10.1038/srep00636
52.
52. D. L. Longo and D. Longo, Harrison's Hematology and Oncology (McGraw-Hill Medical, New York, 2010), pp. 294318.
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4801516
Loading
/content/aip/journal/pop/20/5/10.1063/1.4801516
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/5/10.1063/1.4801516
2013-04-15
2014-09-17

Abstract

Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10 electrons, the electrical field in the head vicinity is about 10 V/m, and the electron density of the streamer column is about 10 m. Both and studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells without damaging normal cells and significantly reduces tumor size . Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the phase of the cell cycle.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/5/1.4801516.html;jsessionid=3c1a5tr67hthb.x-aip-live-02?itemId=/content/aip/journal/pop/20/5/10.1063/1.4801516&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cold atmospheric plasma in cancer therapya)
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4801516
10.1063/1.4801516
SEARCH_EXPAND_ITEM