Important Notice Regarding Scitation Services

Scitation will be upgrading its access control system between July 4 and July 10, 2014. During this process, existing subscriptions and purchased content will remain available and unaffected, but some site and personal account functionality will be disabled.

Services will be fully restored on July 10, 2014. Thank you for your patience!

Click here for complete details.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Simulations of electrothermal instability growth in solid aluminum rodsa)
a)Paper QI3 2 Bull. Am. Phys. Soc. , 289 (2012).
Rent this article for
Access full text Article
1. M. G. Haines, J. Plasma Phys. 12, 1 (1974).
2. M. Sadowski, H. Herold, H. Schmidt, and M. Shakhatre, Phys. Lett. A 105, 117 (1984).
3. A. Branitskii, V. Vikharev, S. V. Zakharov, A. Kasimov, V. P. Smirnov, and V. Y. Tsarfin, Sov. J. Plasma Phys. 17, 311 (1991).
4. M. A. Liberman, J. S. De Groot, A. Toor, and R. Spielman, Physics of High-Density Z-Pinch Plasmas (Springer, 1999).
5. K. J. Peterson, D. B. Sinars, E. P. Yu, M. C. Herrmann, M. E. Cuneo, S. A. Slutz, I. C. Smith, B. W. Atherton, M. D. Knudson, and C. Nakhleh, Phys. Plasmas 19, 092701 (2012).
6. V. Oreshkin, R. Baksht, N. Ratakhin, A. Shishlov, K. Khishchenko, P. Levashov, and I. Beilis, Phys. Plasmas 11, 4771 (2004).
7. A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, N. A. Labetskaya, A. V. Shishlov, I. I. Beilis, and R. B. Baksht, Phys. Plasmas 15, 102706 (2008).
8. D. B. Sinars, S. A. Slutz, M. Herrmann, R. D. McBride, M. E. Cuneo, C. A. Jennings, J. P. Chittenden, A. L. Velikovich, K. J. Peterson, R. A. Vesey, C. Nakhleh, B. E. Blue, E. M. Waisman, K. Killebrew, D. Schroen, K. Tomlinson, A. D. Edens, M. R. Lopez, I. C. Smith, J. Shores, V. Bigman, G. R. Bennett, B. W. Atherton, M. Savage, W. A. Stygar, G. T. Leifeste, and J. L. Porter, Phys. Plasmas 18, 056301 (2011).
9. R. McBride, S. Slutz, C. Jennings, D. Sinars, M. Cuneo, M. Herrmann, R. Lemke, M. Martin, R. Vesey, K. Peterson, A. Sefkow, C. Nakhleh, B. Blue, K. Killebrew, D. Schroen, T. Rogers, A. Laspe, M. Lopez, I. Smith, B. Atherton, M. Savage, W. Stygar, and J. Porter, Phys. Rev. Lett. 109, 135004 (2012).
10. E. Harris, Phys. Fluids 5, 1057 (1962).
11. I. Lindemuth, R. Siemon, B. Bauer, M. Angelova, and W. Atchison, Phys. Rev. Lett. 105, 195004 (2010).
12. S. F. Garanin, S. D. Kuznetsov, W. L. Atchison, R. E. Reinovsky, T. J. Awe, B. S. Bauer, S. Fuelling, I. R. Lindemuth, and R. E. Siemon, IEEE Trans. Plasma Sci. 38, 1815 (2010).
13. T. J. Awe, B. S. Bauer, S. Fuelling, and R. E. Siemon, Phys. Rev. Lett. 104, 035001 (2010).
14. S. Y. Gus'kov, G. V. Ivanenkov, A. R. Mingaleev, V. V. Nikishin, S. A. Pikuz, V. B. Rozanov, W. Stepniewski, V. F. Tishkin, D. A. Hammer, and T. A. Shelkovenko, Plasma Phys. Rep. 26, 745 (2000).
15. B. J. Kohn, N. F. Roderick, and C. W. Beason, J. Appl. Phys. 54, 4348 (1983).
16. M. R. Douglas, C. Deeney, and N. F. Roderick, Phys. Plasmas 5, 4183 (1998).
17. J. Chittenden and C. Jennings, Phys. Rev. Lett. 101, 055005 (2008).
18. C. Jennings, M. Cuneo, and E. Waisman, Phys. Plasmas 17, 092703 (2010).
19. E. Yu, M. Cuneo, M. Desjarlais, R. W. Lemke, D. B. Sinars, T. A. Haill, E. M. Waisman, G. R. Bennett, C. A. Jennings, T. A. Mehlhorn, T. A. Brunner, H. L. Hanshaw, J. L. Porter, W. A. Stygar, and L. I. Rudakov, Phys. Plamsas 15, 056301 (2008).
20. D. L. Peterson, R. L. Bowers, J. H. Brownell, A. E. Greene, K. D. McLenithan, T. A. Oliphant, N. F. Roderick, and A. J. Scannapieco, Phys. Plasmas 3, 368 (1996).
21. D. L. Peterson, R. L. Bowers, W. Matuska, K. D. McLenithan, G. A. Chandler, C. Deeney, M. S. Derzon, M. Douglas, M. K. Matzen, and T. J. Nash, Phys. Plasmas 6, 2178 (1999).
22. D. L. Peterson, R. L. Bowers, K. D. McLenithan, C. Deeney, G. A. Chandler, R. B. Spielman, M. K. Matzen, and N. F. Roderick, Phys. Plasmas 5, 3302 (1998).
23. S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, S. Glenzer, A. V. Hamza, S. P. Hatchett, M. C. Herrmann, D. E. Hinkel, D. D. Ho, H. Huang, O. S. Jones, J. Kline, G. Kyrala, O. L. Landen, B. J. MacGowan, M. M. Marinak, D. D. Meyerhofer, J. L. Milovich, K. A. Moreno, E. I. Moses, D. H. Munro, A. Nikroo, R. E. Olson, K. Peterson, S. M. Pollaine, J. E. Ralph, H. F. Robey, B. K. Spears, P. T. Springer, L. J. Suter, C. A. Thomas, R. P. Town, R. Vesey, S. V. Weber, H. L. Wilkens, and D. C. Wilson, Phys. Plasmas 18, 051001 (2011).
24. G. Bennett, I. Smith, J. Shores, and D. Sinars, Rev. Sci. Instrum. 79, 10E914 (2008).
25. D. Sinars, G. Bennett, and D. Wenger, Rev. Sci. Instrum. 75, 3672 (2004).
26. D. Ryutov, M. Derzon, and M. Matzen, Rev. Mod. Phys. 72, 167 (2000).
27. V. I. Oreshkin, Phys. Plasmas 15, 092103 (2008).
28. M. Desjarlais, J. Kress, and L. Collins, Phys. Rev. E 66, 025401 (2002).
29. M. Marinak, G. Kerbel, N. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001).
30. K. S. Holian, “ T-4 handbook of material properties data bases,” Los Alamos Laboratory Report No. LA-10160-MS, 1984.
31. M. P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001).<267::AID-CTPP267>3.0.CO;2-P
32. D. Sinars, K. Peterson, and S. Slutz, Plasma Sci. 34, 2408 (2011).
33. T. J. Awe, B. S. Bauer, and S. Fuelling, Plasma Sci. 39, 2418 (2011).
34. V. I. Oreshkin and S. A. Chaikovsky, Phys. Plasmas 19, 022706 (2012).
35. M. R. Martin, R. W. Lemke, R. D. McBride, J.-P. Davis, D. H. Dolan, M. D. Knudson, K. R. Cochrane, D. B. Sinars, I. C. Smith, and M. Savage, Phys. Plasmas 19, 056310 (2012).
36. R. McBride, Bull. Am. Phys. Soc. 57, 288 (2012).

Data & Media loading...


Article metrics loading...



A recent publication [K. J. Peterson , Phys. Plasmas , 092701 (2012)] describes simulations and experiments of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns rise time current pulse on Sandia National Laboratories Z accelerator. Quantitative analysis of the high precision radiography data obtained in the experiments showed excellent agreement with simulations and demonstrated levels of instability growth in dense matter that could not be explained by magneto-Rayleigh-Taylor instabilities alone. This paper extends the previous one by examining the nature of the instability growth in 2D simulations in much greater detail. The initial instability growth in the simulations is shown via several considerations to be predominantly electrothermal in nature and provides a seed for subsequent magneto-Rayleigh-Taylor growth.


Full text loading...

This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Scitation|Simulations of electrothermal instability growth in solid aluminum rodsa)