1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
On nonlinear physics of shear Alfvén wavesa)
a)Paper SR1 1, Bull. Am. Phys. Soc. , 291 (2012).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/5/10.1063/1.4804628
1.
1. H. Alfvén, Nature 150, 405 (1942).
http://dx.doi.org/10.1038/150405d0
2.
2. J. A. Ionson, Astrophys. J. 254, 318 (1982).
http://dx.doi.org/10.1086/159736
3.
3. K. Tamabechi, J. R. Gilleland, Y. A. Sokolov, R. Toschi, and ITER Team, Nucl. Fusion 31, 1135 (1991).
http://dx.doi.org/10.1088/0029-5515/31/6/011
4.
4. A. Fasoli, C. Gormenzano, H. L. Berk, B. N. Breizman, S. Briguglio, D. S. Darrow, N. N. Gorelenkov, W. W. Heidbrink, A. Jaun, S. V. Konovalov, R. Nazikian, J. Noterdaeme, S. E. Sharapov, K. Shinohara, D. Testa, K. Tobita, Y. Todo, G. Vlad, and F. Zonca, Nucl. Fusion 47, S264 (2007).
http://dx.doi.org/10.1088/0029-5515/47/6/S05
5.
5. L. Chen and A. Hasegawa, Phys. Fluids 17, 1399 (1974).
http://dx.doi.org/10.1063/1.1694904
6.
6. L. Chen and A. Hasegawa, J. Geophys. Res. 79, 1024, doi:10.1029/JA079i007p01024 (1974).
http://dx.doi.org/10.1029/JA079i007p01024
7.
7. H. Hasegawa and L. Chen, Phys. Fluids 19, 1924 (1976).
http://dx.doi.org/10.1063/1.861427
8.
8. C. E. Kieras and J. A. Tataronis, J. Plasma Phys. 28, 395 (1982).
http://dx.doi.org/10.1017/S0022377800000386
9.
9. L. Chen and F. Zonca, Nucl. Fusion 47, S727 (2007).
http://dx.doi.org/10.1088/0029-5515/47/10/S20
10.
10. C. Z. Cheng, L. Chen, and M. S. Chance, Ann. Phys. (N.Y.) 161, 21 (1985).
http://dx.doi.org/10.1016/0003-4916(85)90335-5
11.
11. L. Chen, R. B. White, and M. N. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1122
12.
12. H. Biglari and L. Chen, Phys. Rev. Lett. 67, 3681 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3681
13.
13. M. Liljeström and J. Weiland, Phys. Fluids B 4, 630 (1992).
http://dx.doi.org/10.1063/1.860260
14.
14. S. Tsai and L. Chen, Phys. Fluids B 5, 3284 (1993).
http://dx.doi.org/10.1063/1.860624
15.
15. L. Chen, Phys. Plasmas 1, 1519 (1994).
http://dx.doi.org/10.1063/1.870702
16.
16. L. Chen and F. Zonca, Phys. Scr. T60, 81 (1995).
http://dx.doi.org/10.1088/0031-8949/1995/T60/011
17.
17. F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 48, 537 (2006).
http://dx.doi.org/10.1088/0741-3335/48/5/004
18.
18. H. L. Berk and B. N. Breizman, Phys. Fluids B 2, 2226 (1990).
http://dx.doi.org/10.1063/1.859404
19.
19. H. L. Berk and B. N. Breizman, Phys. Fluids B 2, 2235 (1990).
http://dx.doi.org/10.1063/1.859405
20.
20. H. L. Berk and B. N. Breizman, Phys. Fluids B 2, 2246 (1990).
http://dx.doi.org/10.1063/1.859406
21.
21. B. N. Breizman and S. E. Sharapov, Plasma Phys. Controlled Fusion 53, 054001 (2011).
http://dx.doi.org/10.1088/0741-3335/53/5/054001
22.
22. R. B. White, R. J. Goldston, K. McGuire, A. H. Boozer, D. A. Monticello, and W. Park, Phys. Fluids 26, 2958 (1983).
http://dx.doi.org/10.1063/1.864060
23.
23. F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, and G. Vlad, Nucl. Fusion 45, 477 (2005).
http://dx.doi.org/10.1088/0029-5515/45/6/009
24.
24. C. Walén, Ark. Mat., Astron. Fys. 30A, 1 (1944).
25.
25. H. Alfvén, Cosmical Electrodynamics (Clarendon, Oxford, United Kingdom, 1950).
26.
26. W. M. Elsasser, Rev. Mod. Phys. 28, 135 (1956).
http://dx.doi.org/10.1103/RevModPhys.28.135
27.
27. R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (W. A. Benjamin Inc., 1969).
28.
28. L. Chen and F. Zonca, Europhys. Lett. 96, 35001 (2011).
http://dx.doi.org/10.1209/0295-5075/96/35001
29.
29. E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
http://dx.doi.org/10.1063/1.863762
30.
30. Y. Lin, J. R. Johnson, and X. Wang, Phys. Rev. Lett. 109, 125003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.125003
31.
31. F. Zonca and L. Chen, “Spontaneous excitation of convective cells by kinetic Alfvén waves,” Europhys. Lett. (submitted).
32.
32. J. B. Taylor and B. McNamara, Phys. Fluids 14, 1492 (1971).
http://dx.doi.org/10.1063/1.1693635
33.
33. H. Okuda and J. M. Dawson, Phys. Fluids 16, 408 (1973).
http://dx.doi.org/10.1063/1.1694356
34.
34. C. Chu, M.-S. Chu, and T. Ohkawa, Phys. Rev. Lett. 41, 653 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.653
35.
35. A. T. Lin, J. M. Dawson, and H. Okuda, Phys. Rev. Lett. 41, 753 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.753
36.
36. P. K. Shukla, M. Y. Yu, H. U. Rahman, and K. H. Spatschek, Phys. Rep. 105, 227 (1984).
http://dx.doi.org/10.1016/0370-1573(84)90096-6
37.
37. A. Hasegawa, C. G. Maclennan, and Y. Kodama, Phys. Fluids 22, 2122 (1979).
http://dx.doi.org/10.1063/1.862504
38.
38. Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 (1998).
http://dx.doi.org/10.1126/science.281.5384.1835
39.
39. R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, Zh. Eksp. Teor. Fiz. Pis'ma Red. 27, 361 (1978).
40.
40. R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, Sov. Phys. JETP 27, 340 (1978).
41.
41. L. Chen and F. Zonca, Phys. Rev. Lett. 109, 145002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.145002
42.
42. N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968).
http://dx.doi.org/10.1063/1.1691835
43.
43. M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.724
44.
44. F. Zonca, P. Buratti, A. Cardinali, L. Chen, J. Dong, Y. Long, A. V. Milovanov, F. Romanelli, P. Smeulders, L. Wang, Z. Wang, C. Castaldo, R. Cesario, E. Giovannozzi, M. Marinucci, and V. Pericoli Ridolfini, Nucl. Fusion 47, 1588 (2007).
http://dx.doi.org/10.1088/0029-5515/47/11/022
45.
45. F. Zonca and L. Chen, in Theory of Fusion Plasmas, edited by O. Sauter, X. Garbet, and E. Sindoni (AIP, 2008), Vol. CP1069, p. 355.
46.
46. F. Zonca and L. Chen, Europhys. Lett. 83, 35001 (2008).
http://dx.doi.org/10.1209/0295-5075/83/35001
47.
47. L. Chen, Z. Lin, and R. B. White, Phys. Plasmas 7, 3129 (2000).
http://dx.doi.org/10.1063/1.874222
48.
48. T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.266
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4804628
Loading
Loading

Article metrics loading...

/content/aip/journal/pop/20/5/10.1063/1.4804628
2013-05-14
2014-04-18

Abstract

Shear Alfvén waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to their anisotropic nature, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries, such as the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This work discusses the pure Alfvénic state and demonstrates the crucial roles that finite ion compressibility, non-ideal kinetic effects, and geometry play in breaking it and, thereby, the nonlinear physics of SAW wave-wave interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/5/1.4804628.html;jsessionid=1hha821mrhk1h.x-aip-live-02?itemId=/content/aip/journal/pop/20/5/10.1063/1.4804628&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On nonlinear physics of shear Alfvén wavesa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4804628
10.1063/1.4804628
SEARCH_EXPAND_ITEM