1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Turbulence and transport suppression scaling with flow shear on the Large Plasma Devicea)
a)Paper TI2 2, Bull. Am. Phys. Soc. , 291 (2012).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/5/10.1063/1.4804637
1.
1. K. Burrell, Phys. Plasmas 4, 1499 (1997).
http://dx.doi.org/10.1063/1.872367
2.
2. K. Burrell, Phys. Plasmas 6, 4418 (1999).
http://dx.doi.org/10.1063/1.873728
3.
3. P. Terry, Rev. Mod. Phys. 72, 109 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.109
4.
4. G. Van Oost, J. Adamek, V. Antoni, P. Balan, J. A. Boedo, P. Devynck, I. Duran, L. Eliseev, J. P. Gunn, M. Hron, C. Ionita, S. Jachmich, G. S. Kirnev, E. Martines, A. Melnikov, R. Schrittwieser, C. Silva, J. Stockel, M. Tendler, C. Varandas, M. Van Schoor, V. Vershkov, and R. R. Weynants, Plasma. Phys. Controlled Fusion 45, 621 (2003).
http://dx.doi.org/10.1088/0741-3335/45/5/308
5.
5. O. Sakai, Y. Yasaka, and R. Itatani, Phys. Rev. Lett. 70, 4071 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.4071
6.
6. J. E. Maggs, T. A. Carter, and R. J. Taylor, Phys. Plasmas 14, 052507 (2007).
http://dx.doi.org/10.1063/1.2722302
7.
7. T. A. Carter and J. E. Maggs, Phys. Plasmas 16, 012304 (2009).
http://dx.doi.org/10.1063/1.3059410
8.
8. D. A. Schaffner, T. A. Carter, G. D. Rossi, D. S. Guice, J. E. Maggs, S. Vincena, and B. Friedman, Phys. Rev. Lett. 109, 135002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.135002
9.
9. K. H. Burrell, T. N. Carlstrom, E. J. Doyle, D. Finkenthal, P. Gohil, R. J. Groebner, D. L. Hillis, J. Kim, H. Matsumoto, R. A. Moyer, T. H. Osborne, C. L. Rettig, W. A. Peebles, T. L. Rhodes, H. St. John, R. D. Stambaugh, M. R. Wade, and J. G. Watkins, Plasma. Phys. Controlled Fusion 34, 1859 (1992).
http://dx.doi.org/10.1088/0741-3335/34/13/014
10.
10. F. Wagner, Plasma Phys. Controlled Fusion 49, B1 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S01
11.
11. R. J. Taylor, M. L. Brown, B. D. Fried, H. Grote, J. R. Liberati, G. J. Morales, P. Pribyl, D. Darrow, and M. Ono, Phys. Rev. Lett. 63, 2365 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.2365
12.
12. R. R. Weynants, G. Van Oost, G. Bertschinger, J. Boedo, P. Brys, T. Delvigne, K. H. Dippel, F. Durodie, H. Euringer, K. H. Finken, D. S. Gray, J. D. Hey, D. L. Hillis, J. T. Hogan, L. Konan, R. Leners, A. M. Messian, A. Pospieszczyck, U. Samm, R. P. Schorn, B. Schweer, G. Telesca, R. Vannieuwenhove, and P. E. Vandenplas, Nucl. Fusion 32, 837 (1992).
http://dx.doi.org/10.1088/0029-5515/32/5/I10
13.
13. R. R. Weynants, S. Jachmich, and G. Van Oost, Plasma. Phys. Controlled Fusion 40, 635 (1998).
http://dx.doi.org/10.1088/0741-3335/40/5/013
14.
14. J. Boedo, D. Gray, S. Jachmich, R. Conn, G. P. Terry, G. Tynan, G. Van Oost, R. R. Weynants, and TEXTOR Team, Nucl. Fusion 40(7), 1397 (2000).
http://dx.doi.org/10.1088/0029-5515/40/7/309
15.
15. J. A. Boedo, D. S. Gray, P. W. Terry, S. Jachmich, G. R. Tynan, R. W. Conn, and TEXTOR-94 Team, Nucl. Fusion 42, 117 (2002).
http://dx.doi.org/10.1088/0029-5515/42/2/301
16.
16. H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B. 2, 1 (1990).
http://dx.doi.org/10.1063/1.859529
17.
17. K. C. Shaing, E. C. Crume, and W. A. Houlberg, Phys. Fluids B 2(6), 1492 (1990).
http://dx.doi.org/10.1063/1.859473
18.
18. Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 4, 1385 (1992).
http://dx.doi.org/10.1063/1.860095
19.
19. Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 5(7), 2000 (1993).
http://dx.doi.org/10.1063/1.860788
20.
20. A. S. Ware, P. W. Terry, P. H. Diamond, and B. A. Carreras, Plasma Phys. Controlled Fusion 38, 1343 (1996).
http://dx.doi.org/10.1088/0741-3335/38/8/034
21.
21. A. S. Ware, P. W. Terry, B. A. Carreras, and P. H. Diamond, Phys. Plasmas 5, 173 (1998).
http://dx.doi.org/10.1063/1.872685
22.
22. P. W. Terry, D. E. Newman, and A. S. Ware, Phys. Rev. Lett. 87, 185001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.185001
23.
23. E.-J. Kim and P. H. Diamond, Phys. Rev. Lett. 91(7), 075001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.075001
24.
24. E.-J. Kim, P. H. Diamond, and T. S. Hahm, Phys. Plasmas 11(10), 4554 (2004).
http://dx.doi.org/10.1063/1.1783315
25.
25. A. P. L. Newton and E.-J. Kim, Phys. Plasmas 18, 052305 (2011).
http://dx.doi.org/10.1063/1.3582097
26.
26. W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991).
http://dx.doi.org/10.1063/1.1142175
27.
27. T. S. Hahm, Phys. Plasmas 1, 2940 (1994).
http://dx.doi.org/10.1063/1.870534
28.
28. M. Leconte, P. Beyer, S. Benkadda, and X. Garbet, Phys. Plasmas 13, 112301 (2006).
http://dx.doi.org/10.1063/1.2363349
29.
29. A. P. L. Newton and E.-J. Kim, Phys. Plasmas 14, 122306 (2007).
http://dx.doi.org/10.1063/1.2821246
30.
30. P. W. Terry and R. Gatto, Phys. Plasmas 13, 062309 (2006).
http://dx.doi.org/10.1063/1.2212403
31.
31. G. M. Staebler, R. E. Waltz, J. Candy, and J. E. Kinsey, Phys. Rev. Lett. 110, 055003, (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.055003
32.
32. B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and B. Dudson, Phys. Plasmas 19, 102307 (2012).
http://dx.doi.org/10.1063/1.4759010
33.
33. M. Umansky et al., Phys. Plasmas 18, 055709 (2011).
http://dx.doi.org/10.1063/1.3567033
34.
34. P. Popovich, M. V. Umansky, T. A. Carter, and B. Friedman, Phys. Plasmas 17, 122312 (2010).
http://dx.doi.org/10.1063/1.3527987
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4804637
Loading
/content/aip/journal/pop/20/5/10.1063/1.4804637
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/5/10.1063/1.4804637
2013-05-15
2014-09-20

Abstract

Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) [W. Gekelman , Rev. Sci. Instr. , 2875 (1991)] has been achieved using a biasable limiter. This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and particle transport in LAPD. The combination of externally controllable shear in a turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the experiment a useful testbed for validation of shear suppression models. Motivated by these models, power-law fits are made to the density and radial velocity fluctuation amplitudes, particle flux, density-potential crossphase, and radial correlation length. The data show a break in the trend of these quantities when the shearing rate ( ) is comparable to the turbulent decorrelation rate ( ). No one model captures the trends in the all turbulent quantities for all values of the shearing rate, but some models successfully match the trend in either the weak ( ) or strong ( ) shear limits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/5/1.4804637.html;jsessionid=3aba7h03hs80d.x-aip-live-02?itemId=/content/aip/journal/pop/20/5/10.1063/1.4804637&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Turbulence and transport suppression scaling with flow shear on the Large Plasma Devicea)
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4804637
10.1063/1.4804637
SEARCH_EXPAND_ITEM