1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The microphysics and macrophysics of cosmic raysa)
a)Paper AR1 1, Bull. Am. Phys. Soc., 22 (2012).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/5/10.1063/1.4807033
1.
1. P. Carlson, Phys. Today 65(2), 30 (2012).
http://dx.doi.org/10.1063/PT.3.1437
2.
2. W. Baade and F. Zwicky, Phys Rev. 46, 76 (1934).
http://dx.doi.org/10.1103/PhysRev.46.76.2
3.
3. E. Fermi, Phys Rev. 75, 1169 (1949).
http://dx.doi.org/10.1103/PhysRev.75.1169
4.
4. W. A. Hiltner, Science 109, 165 (1949).
http://dx.doi.org/10.1126/science.109.2825.165
5.
5. J. S. Hall, Science 109, 166 (1949).
http://dx.doi.org/10.1126/science.109.2825.166
6.
6. K. Kotera and A. Olinto, Annu. Rev. Astron. Astrophys. 49, 119 (2011).
http://dx.doi.org/10.1146/annurev-astro-081710-102620
7.
7. T. K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, 1991).
8.
8. L. A. Anchordoqui and T. Montaruli, Annu. Rev. Nucl. Part. Sci. 60, 129 (2010).
http://dx.doi.org/10.1146/annurev.nucl.012809.104551
9.
9. A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123011
10.
10. K. M. Ferrière, Rev. Mod. Phys. 73, 1031 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.1031
11.
11. R. D. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).
http://dx.doi.org/10.1016/0370-1573(87)90134-7
12.
12. R. M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, 2005).
13.
13. R. Schlickeiser, Cosmic Ray Astrophysics (Springer-Verlag, 2002).
14.
14. A. Shalchi, Nonlinear Cosmic Ray Diffusion Theories (Springer-Verlag, 2010).
15.
15. A. R. Taylor, J. M. Stil, and C. Sunstrum, Astrophys. J. 702, 1230 (2009).
http://dx.doi.org/10.1088/0004-637X/702/2/1230
16.
16. S. A. Mao, B. M. Gaensler, M. Haverkorn, E. G. Zweibel, G. J. Madsen, N. M. McClure-Griffiths, A. Shukurov, and P. P. Kronberg, Astrophys. J. 714, 1170 (2010).
http://dx.doi.org/10.1088/0004-637X/714/2/1170
17.
17. R. Jansson and G. R. Farrar, Astrophys. J. 761, L11 (2012).
http://dx.doi.org/10.1088/2041-8205/761/1/L11
18.
18. E. G. Zweibel and C. Heiles, Nature (London) 385, 131 (1997).
http://dx.doi.org/10.1038/385131a0
19.
19. D. Yuhas and R. Walker, in Proceedings of the 13th International Conference on Cosmic Rays (1973), Vol. 2, p. 1116.
20.
20. E. Parizot and L. Drury, Astron. Astrophys. 349, 673 (1999).
21.
21. R. W. Webber, Astrophys. J. 506, 329 (1998).
http://dx.doi.org/10.1086/306222
22.
22. A. D. Erlykin and A. W. Wolfendale, Astropart. Phys. 25, 183 (2006).
http://dx.doi.org/10.1016/j.astropartphys.2006.01.003
23.
23. A. A. Abdo et al. 2008, Phys. Rev. Lett. 101, 221101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.221101
24.
24. R. Abbasi et al., Astrophys. J. 718, L194 (2010).
http://dx.doi.org/10.1088/2041-8205/718/2/L194
25.
25. R. Abbasi et al., Astrophys. J. 746, 33 (2012).
http://dx.doi.org/10.1088/0004-637X/746/1/33
26.
26. M. A. Malkov, P. H. Diamond, L. Drury, and R. Z. Sagdeev, Astrophys. J. 721, 750 (2010).
http://dx.doi.org/10.1088/0004-637X/721/1/750
27.
27. A. Lazarian and P. Desiati, Astrophys. J. 722, 188 (2010).
http://dx.doi.org/10.1088/0004-637X/722/1/188
28.
28. P. Desiati and A. Lazarian, Astrophys. J. 762, 44 (2013).
http://dx.doi.org/10.1088/0004-637X/762/1/44
29.
29. A. W. Strong and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).
http://dx.doi.org/10.1086/306470
30.
30. G. R. Farrar, R. Jansson, L. J. Feain, and B. M. Gaensler, J. Cosmol. Astropart. Phys. 1, 23 (2013).
http://dx.doi.org/10.1088/1475-7516/2013/01/023
31.
31. J. R. Jokipii, Astrophys. J. 146, 480 (1966).
http://dx.doi.org/10.1086/148912
32.
32. J. R. Jokipii and E. N. Parker, Astrophys. J. 155, 777 (1969).
http://dx.doi.org/10.1086/149909
33.
33. J. R. Jokipii and E. N. Parker, Astrophys. J. 155, 799 (1969).
http://dx.doi.org/10.1086/149910
34.
34. M. A. Forman, J. R. Jokipii, and A. J. Owens, Astrophys. J. 192, 535 (1974).
http://dx.doi.org/10.1086/153087
35.
35. J. Minnie, W. H. Matthaeus, J. W. Bieber, D. Ruffolo, and R. A. Burger, J. Geophys. Res. 114, A01102, doi:10.1029/2008JA013349 (2009).
http://dx.doi.org/10.1029/2008JA013349
36.
36. T. Hauff, F. Jenko, A. Shalchi, and R. Schlickeiser, Astrophys. J. 711, 997 (2010).
http://dx.doi.org/10.1088/0004-637X/711/2/997
37.
37. A. Beresnyak, H. Yan, and A. Lazarian, Astrophys. J. 728, 60 (2011).
http://dx.doi.org/10.1088/0004-637X/728/1/60
38.
38. A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.38
39.
39. D. G. Wentzel, Astrophys. J. 152, 987 (1968).
http://dx.doi.org/10.1086/149611
40.
40. R. M. Kulsrud and W. P. Pearce, Astrophys. J. 156, 445 (1969).
http://dx.doi.org/10.1086/149981
41.
41. B. D. G. Chandran, Astrophys. J. 529, 513 (2000).
http://dx.doi.org/10.1086/308232
42.
42. H. Yan and A. Lazarian, Phys. Rev. Lett. 89, 281102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.281102
43.
43. R. Selkowitz and E. G. Blackman, Mon. Not. R. Astron. Soc. 382, 1119 (2007).
http://dx.doi.org/10.1111/j.1365-2966.2007.12259.x
44.
44. E. G. Zweibel, Astrophys. J. 587, 625 (2003).
http://dx.doi.org/10.1086/368256
45.
45. E. G. Zweibel and J. E. Everett, Astrophys. J. 709, 1412 (2010).
http://dx.doi.org/10.1088/0004-637X/709/2/1412
46.
46. J. Skilling, Astrophys. J. 170, 265 (1971).
http://dx.doi.org/10.1086/151210
47.
47. R. M. Kulsrud and C. J. Cesarsky, Ap. J. Lett. 8, 189 (1971).
48.
48. C. F. Kennel and F. Engelmann, Phys. Fluids 9, 2377 (1966).
http://dx.doi.org/10.1063/1.1761629
49.
49. G. M. Felice and R. M. Kulsrud, Astrophys. J. 553, 198 (2001).
http://dx.doi.org/10.1086/320651
50.
50. J. A. Earl, J. R. Jokipii, and G. Morfill, Astrophys. J. 331, L91 (1988).
http://dx.doi.org/10.1086/185242
51.
51. S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965).
52.
52. M. A. Lee and H. J. Völk, Astrophys. Space Sci. 24, 31 (1973).
http://dx.doi.org/10.1007/BF00648673
53.
53. A. J. Farmer and P. Goldreich, Astrophys. J. 604, 671 (2004).
http://dx.doi.org/10.1086/382040
54.
54. P. Goldreich and S. Sridhar, Astrophys. J. 438, 763 (1995).
http://dx.doi.org/10.1086/175121
55.
55. J. E. Everett and E. G. Zweibel, Astrophys. J. 739, 60 (2011).
http://dx.doi.org/10.1088/0004-637X/739/2/60
56.
56. G. F. Krymsky, Dokl. Akad. Nauk SSSR 234, 1306 (1977).
57.
57. W. I. Axford, E. Leer, and G. Skadron, in Proceedings 15th International Cosmic Ray Conference (1977), Vol. 11, p. 132.
58.
58. A. R. Bell, Mon. Not. R. Astron. Soc. 182, 147 (1978).
59.
59. R. D. Blandford and J. P. Ostriker, Astrophys. J. 221, L29 (1978).
http://dx.doi.org/10.1086/182658
60.
60. F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).
http://dx.doi.org/10.1007/BF01206003
61.
61. M. A. Malkov and L. O’C. Drury, Rep. Prog. Phys. 64, 429 (2001).
http://dx.doi.org/10.1088/0034-4885/64/4/201
62.
62. L. O’C. Drury, Astropart. Phys. 39, 52 (2012).
http://dx.doi.org/10.1016/j.astropartphys.2012.02.006
63.
63. Y. Butt, Nature (London) 460, 701 (2009).
http://dx.doi.org/10.1038/nature08127
64.
64. F. Aharonian, A. Bykov, E. Parizot, V. Ptuskin, and A. Watson, Space Sci. Rev. 166, 97 (2012).
http://dx.doi.org/10.1007/s11214-011-9770-3
65.
65. P. Blasi, e-print arXiv:1211.4799.
66.
66. L. O'C. Drury and H. J. Völk, Astrophys. J. 248, 344 (1981).
http://dx.doi.org/10.1086/159159
67.
67. J. F. Mckenzie and H. J. Völk, Astron. Astrophys. 116, 191 (1982).
68.
68. H. J. Völk, L. O'C. Drury, and J. F. McKenzie, Astron. Astrophys. 130, 19 (1984).
69.
69. D. C. Ellison and D. Eichler, Astrophys. J. 286, 691 (1984).
http://dx.doi.org/10.1086/162644
70.
70. E. G. Berezhko and D. C. Ellison, Astrophys. J. 526, 385 (1999).
http://dx.doi.org/10.1086/307993
71.
71. E. Amato and P. Blasi, Mon. Not. R. Astron. Soc. 364, L76 (2005).
http://dx.doi.org/10.1111/j.1745-3933.2005.00110.x
72.
72. E. Amato and P. Blasi, Mon. Not. R. Astron. Soc. 371, 1251 (2006).
http://dx.doi.org/10.1111/j.1365-2966.2006.10739.x
73.
73. A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).
http://dx.doi.org/10.1111/j.1365-2966.2004.08097.x
74.
74. J. Niemiec, M. Pohl, T. Stroman, and K.-I. Nishikawa, Astrophys. J. 684, 1174 (2008).
http://dx.doi.org/10.1086/590054
75.
75. Y. Ohira, B. Reville, J. G. Kirk, and F. Takahara, Astrophys. J. 698, 445 (2009).
http://dx.doi.org/10.1088/0004-637X/698/1/445
76.
76. M. A. Riquelme and A. Spitkovsky, Astrophys. J. 694, 626 (2009).
http://dx.doi.org/10.1088/0004-637X/694/1/626
77.
77. L. Gargaté, R. A. Fonseca, J. Niemiec, M. Pohl, R. Bingham, and L. O. Silva, Astrophys. J. 711, L127 (2010).
http://dx.doi.org/10.1088/2041-8205/711/2/L127
78.
78. L. Gargaté and A. Spitkovsky, Astrophys. J. 744, 67 (2012).
http://dx.doi.org/10.1088/0004-637X/744/1/67
79.
79. K. M. Schure, A. R. Bell, L. O'C. Drury, and A. M. Bykov, Space Sci. Rev. 173, 491 (2012).
http://dx.doi.org/10.1007/s11214-012-9871-7
80.
80. I. Rogachevskii, N. Kleeorin, A. Brandenburg, and D. Eichler, Astrophys. J. 753, 6 (2012).
http://dx.doi.org/10.1088/0004-637X/753/1/6
81.
81. P. O. Lagage and C. J. Cesarsky, Astron. Astrophys. 118, 223 (1983).
82.
82. J. Vink and J. M. Laming, 2003, Astrophys. J. 584, 758 (2003).
http://dx.doi.org/10.1086/345832
83.
83. J. Giacalone and J. R. Jokipii, Astrophys. J. 663, L41 (2007).
http://dx.doi.org/10.1086/519994
84.
84. A. Beresnyak, T. W. Jones, and A. Lazarian, Astrophys. J. 707, 1541 (2009).
http://dx.doi.org/10.1088/0004-637X/707/2/1541
85.
85. E. N. Parker, Astrophys. J. 145, 811 (1966).
http://dx.doi.org/10.1086/148828
86.
86. E. G. Zweibel and R. M. Kulsrud, Astrophys. J. 201, 63 (1975).
http://dx.doi.org/10.1086/153858
87.
87. D. Ryu, J. Kim, S. S. Hong, and T. W. Jones, Astrophys. J. 589, 338 (2003).
http://dx.doi.org/10.1086/374392
88.
88. T. J. Dennis and B. D. G. Chandran, Astrophys. J. 690, 566 (2009).
http://dx.doi.org/10.1088/0004-637X/690/1/566
89.
89. P. Sharma, B. D. G. Chandran, E. Quataert, and I. J. Parrish, Astrophys. J. 699, 348 (2009).
http://dx.doi.org/10.1088/0004-637X/699/1/348
90.
90. Y.-Y. Lo, C.-M. Ko, and C.-Y. Wang, Comput. Phys. Commun. 182, 177 (2011).
http://dx.doi.org/10.1016/j.cpc.2010.04.019
91.
91. E. N. Parker, Astrophys. J. 401, 137 (1992).
http://dx.doi.org/10.1086/172046
92.
92. M. Hanasz and H. Lesch, Astron. Astrophys. 278, 561 (1993).
93.
93. R. R. Rafikov and R. M. Kulsrud, Mon. Not. R. Astron. Soc. 314, 839 (2000).
http://dx.doi.org/10.1046/j.1365-8711.2000.03408.x
94.
94. L. O.-C. Drury and S. A. E. G. Falle, Mon. Not. R. Astron. Soc. 223, 353 (1986).
95.
95. M. C. Begelman and E. G. Zweibel, Astrophys. J. 431, 689 (1994).
http://dx.doi.org/10.1086/174519
96.
96. H. Kang, T. W. Jones, and D. Ryu, Astrophys. J. 385, 193 (1992).
http://dx.doi.org/10.1086/170927
97.
97. M. A. Malkov and P. H. Diamond, Astrophys. J. 692, 1571 (2009).
http://dx.doi.org/10.1088/0004-637X/692/2/1571
98.
98. S. V. Chalov, Mon. Not. R. Astron. Soc. 401, 2799 (2010).
http://dx.doi.org/10.1111/j.1365-2966.2009.15864.x
99.
99. F. M. Ipavich, Astrophys. J. 196, 107 (1975).
http://dx.doi.org/10.1086/153397
100.
100. D. Breitschwerdt, J. F. McKenzie, and H. J. Völk, Astron. Astrophys. 245, 79 (1991).
101.
101. J. E. Everett, E. G. Zweibel, R. A. Benjamin, D. McCammon, L. Rocks, and J. S. Gallagher III, Astrophys. J. 674, 258 (2008).
http://dx.doi.org/10.1086/524766
102.
102. J. E. Everett, Q. G. Schiller, and E. G. Zweibel, Astrophys. J. 711, 13 (2010).
http://dx.doi.org/10.1088/0004-637X/711/1/13
103.
103. M. Uhlig, C. Pfrommer, M. Sharma, B. B. Nath, T. A. Ensslin, and V. Springel, Mon. Not. R. Astron. Soc. 423, 2374 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2012.21045.x
104.
104. A. Socrates, S. W. Davis, and Ramirez-Ruiz, Astrophys. J. 687, 202 (2008).
http://dx.doi.org/10.1086/590046
105.
105. M. Loewenstein, E. G. Zweibel, and M. C. Begelman, Astrophys. J., Part 1 377, 392 (1991).
http://dx.doi.org/10.1086/170369
106.
106. F. Guo and S. P. Oh, Mon. Not. R. Astron. Soc. 384, 251 (2008).
http://dx.doi.org/10.1111/j.1365-2966.2007.12692.x
107.
107. D. Sijacki, C. Pfrommer, V. Springel, and T. A. Ensslin, Mon. Not. R. Astron. Soc. 387, 1403 (2008).
http://dx.doi.org/10.1111/j.1365-2966.2008.13310.x
108.
108. Y. Fujita and Y. Ohira, Astrophys. J. 738, 182 (2011).
http://dx.doi.org/10.1088/0004-637X/738/2/182
109.
109. P. Sharma, I. J. Parrish, and E. Quataert, Astrophys. J. 720, 652 (2010).
http://dx.doi.org/10.1088/0004-637X/720/1/652
110.
110. D. G. Wentzel, Astrophys. J. 163, 503 (1971).
http://dx.doi.org/10.1086/150794
111.
111. J. Wiener, E. G. Zweibel, and S. P. Oh, Astrophys. J. 767, 87 (2013).
http://dx.doi.org/10.1088/0004-637X/767/1/87
112.
112. F. M. Rieger and P. Duffy Astrophys. J. 652, 1044 (2006).
http://dx.doi.org/10.1086/508056
113.
113. J. V. Hollweg and C. G. Lilliequist, J. Geophys. Res. 83, 2030, doi:10.1029/JA083iA05p02030 (1978).
http://dx.doi.org/10.1029/JA083iA05p02030
114.
114. P. L. Similon and R. N. Sudan, Astrophys. J. 336, 442 (1989).
http://dx.doi.org/10.1086/167023
115.
115.Acceleration due to scattering by magnetic inhomogeneities moving with speed V is usually considered first or second order Fermi acceleration according to whether the energization rate is linear or quadratic in V.
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4807033
Loading
/content/aip/journal/pop/20/5/10.1063/1.4807033
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/5/10.1063/1.4807033
2013-05-22
2014-09-17

Abstract

This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/5/1.4807033.html;jsessionid=5t954rbcttpra.x-aip-live-06?itemId=/content/aip/journal/pop/20/5/10.1063/1.4807033&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The microphysics and macrophysics of cosmic raysa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/5/10.1063/1.4807033
10.1063/1.4807033
SEARCH_EXPAND_ITEM