1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/6/10.1063/1.4810794
1.
1. A. R. Osborne and T. L. Burch, Science 208, 451 (1980).
http://dx.doi.org/10.1126/science.208.4443.451
2.
2. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, Nature (London) 377, 606 (1995).
http://dx.doi.org/10.1038/377606a0
3.
3. K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature 417, 150 (2002).
http://dx.doi.org/10.1038/nature747
4.
4. G. I. Stegeman and M. Segev, Science 286, 1518 (1999).
http://dx.doi.org/10.1126/science.286.5444.1518
5.
5. H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutui, Geophys. Res. Lett. 21, 2915, doi:10.1029/94GL01284 (1994).
http://dx.doi.org/10.1029/94GL01284
6.
6. R. E. Ergun, C. W. Calrson, J. P. McFadden, F. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Ternerin, I. Roth, L. Muschietti, R. Elphic, R. Strangeway, R. Pfaff, C. A. Cattell, D. Klumpar, E. Shelley, W. Peterson, E. Moebius, and L. Kistler, Geophys. Res. Lett. 25, 2041, doi:10.1029/98GL00636 (1998).
http://dx.doi.org/10.1029/98GL00636
7.
7. J. S. Pickett, S. W. Kahler, L. J. Chen, R. L. Huff, O. Santolik, Y. Khotyaintsev, P. M. E. Décréau, D. Winningham, R. Frahm, M. L. Goldstein, G. S. Lakhina, B. T. Tsurutani, B. Lavraud, D. A. Gurnett, M. André, A. Fazakerley, A. Balogh, and H. Réme, Nonlinear Process. Geophys. 11, 183 (2004).
http://dx.doi.org/10.5194/npg-11-183-2004
8.
8. G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Nonlinear Process. Geophys. 52, 275 (1984).
9.
9. J. D. Moody and C. F. Driscoll, Phys. Plasmas 2, 4482 (1995).
http://dx.doi.org/10.1063/1.871006
10.
10. B. Lefebvre, L. J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, and S. Vincena, Nonlinear Process. Geophys. 18, 41 (2011).
http://dx.doi.org/10.5194/npg-18-41-2011
11.
11. V. A. Turikov, Phys. Scr. 30, 73 (1984).
http://dx.doi.org/10.1088/0031-8949/30/1/015
12.
12. H. Schamel, Phys. Rep. 140, 161 (1986).
http://dx.doi.org/10.1016/0370-1573(86)90043-8
13.
13. A. Luque and H. Schamel, Phys. Rep. 415, 261 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.05.002
14.
14. W. Lotko and C. F. Kennel, J. Geophys. Res. 88, 381, doi:10.1029/JA088iA01p00381 (1983).
http://dx.doi.org/10.1029/JA088iA01p00381
15.
15. N. Dubouloz, R. Pottelette, M. Malingre, and R. A. Treumann, Geophys. Res. Lett. 18, 155, doi:10.1029/90GL02677 (1991).
http://dx.doi.org/10.1029/90GL02677
16.
16. M. Berthomier, R. Pottelette, and M. Malingre, J. Geophys. Res. 103, 4261, doi:10.1029/97JA00338 (1998).
http://dx.doi.org/10.1029/97JA00338
17.
17. R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden, and I. Roth, Geophys. Res. Lett. 26, 2629, doi:10.1029/1999GL900462 (1999).
http://dx.doi.org/10.1029/1999GL900462
18.
18. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).
http://dx.doi.org/10.1103/PhysRev.108.546
19.
19. Y. Omura, H. Kojima, and H. Matsumoto, Geophys. Res. Lett. 21, 2923, doi:10.1029/94GL01605 (1994).
http://dx.doi.org/10.1029/94GL01605
20.
20. Y. Omura, H. Matsumoto, T. Miyake, and H. Kojima, J. Geophys. Res. 101, 2685, doi:10.1029/95JA03145 (1996).
http://dx.doi.org/10.1029/95JA03145
21.
21. M. V. Goldman, M. M. Oppenheim, and D. L. Newman, Geophys. Res. Lett. 26, 1821, doi:10.1029/1999GL900435 (1999).
http://dx.doi.org/10.1029/1999GL900435
22.
22. N. Singh and G. Khazanov, J. Geophys. Res. 108, 8007, doi:10.1029/2002JA009436 (2003).
http://dx.doi.org/10.1029/2002JA009436
23.
23. D. A. Tidman and N. A. Krall, Shock Waves in Collisionless Plasmas (Wiley-Interscience, New-York, 1971), Chap. 6.
24.
24. N. Singh, J. Pure Appl. Phys. 11, 533 (1973).
25.
25. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.996
26.
26. N. Dubouloz, R. A. Treumann, R. Pottelette, and M. Malingre, J. Geophys. Res. 98, 17415, doi:10.1029/93JA01611 (1993).
http://dx.doi.org/10.1029/93JA01611
27.
27. A. P. Kakad, S. V. Singh, R. V. Reddy, G. S. Lakhina, and S. G. Tagare, Adv. Space Res. 43, 1945 (2009).
http://dx.doi.org/10.1016/j.asr.2009.03.005
28.
28. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.240
29.
29. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.1095
30.
30. R. Z. Sagdeev, Rev. Plasma Phys. 4, 23 (1966).
31.
31. S. V. Singh, R. V. Reddy, and G. S. Lakhina, Adv. Space Res. 28, 1643 (2001).
http://dx.doi.org/10.1016/S0273-1177(01)00479-3
32.
32. A. P. Kakad, S. V. Singh, R. V. Reddy, G. S. Lakhina, S. G. Tagare, and F. Verheest, Phys. Plasmas 14, 052305 (2007).
http://dx.doi.org/10.1063/1.2732176
33.
33. S. S. Ghosh, J. S. Pickett, G. S. Lakhina, J. D. Winningham, B. Lavraud, and P. M. E. Décréau, J. Geophys. Res. 113, A06218, doi:10.1029/2007JA012768 (2008).
http://dx.doi.org/10.1029/2007JA012768
34.
34. G. S. Lakhina, A. P. Kakad, S. V. Singh, and F. Verheest, Phys. Plasmas 15, 062903 (2008).
http://dx.doi.org/10.1063/1.2930469
35.
35. G. S. Lakhina, S. V. Singh, A. P. Kakad, F. Verheest, and R. Bharuthram, Nonlinear Process. Geophys. 15, 903 (2008).
http://dx.doi.org/10.5194/npg-15-903-2008
36.
36. G. S. Lakhina, S. V. Singh, A. P. Kakad, M. L. Goldstein, A. F. Vińas, and J. S. Pickett, J. Geophys. Res. 114, A09212, doi:10.1029/2009JA014306 (2009).
http://dx.doi.org/10.1029/2009JA014306
37.
37. T. K. Baluku, M. A. Hellberg, and F. Verheest, Europhys. Lett. 91, 15001 (2010).
http://dx.doi.org/10.1209/0295-5075/91/15001
38.
38. G. S. Lakhina, S. V. Singh, and A. P. Kakad, Adv. Space Res. 47, 1558 (2011).
http://dx.doi.org/10.1016/j.asr.2010.12.013
39.
39. G. S. Lakhina, S. V. Singh, A. P. Kakad, and J. S. Pickett, J. Geophys. Res. 116, A10218, doi:10.1029/2011JA016700 (2011).
http://dx.doi.org/10.1029/2011JA016700
40.
40. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 012302 (2013).
http://dx.doi.org/10.1063/1.4775085
41.
41. K. Watanabe and T. Sato, High-Precision MHD Simulation, in Computer Space Plasma Physics: Simulation Techniques and Software (Terra Scientific, Tokyo Japan, 1993), Chap. 7, pp. 209215.
42.
42. Y. Omura and J. L. Green, J. Geophys. Res. 98, 9189, doi:10.1029/92JA02901 (1993).
http://dx.doi.org/10.1029/92JA02901
43.
43. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Springer, New-York, 1993), pp. 9599.
44.
44. H. Ikezi, R. J. Taylor, and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.11
45.
45. S. Baboolal, Math. Comput. Simul. 55, 309 (2001).
http://dx.doi.org/10.1016/S0378-4754(00)00310-4
46.
46. J. M. Dawson, Phys. Rev. 113, 383 (1959).
http://dx.doi.org/10.1103/PhysRev.113.383
47.
47. T. P. Coffey, Phys. Fluids 14, 1402 (1971).
http://dx.doi.org/10.1063/1.1693620
48.
48. T. Katsouleas and W. B. Mori, Phys. Rev. Lett. 61, 90 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.90
49.
49. T. E. Sheridan, V. Nosenko, and J. Goree, Phys. Plasmas 15, 073703 (2008).
http://dx.doi.org/10.1063/1.2955476
50.
50. D. G. Sibeck and J. T. Gosling, J. Geophys. Res. 101, 31, doi:10.1029/95JA03141 (1996).
http://dx.doi.org/10.1029/95JA03141
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/6/10.1063/1.4810794
Loading
/content/aip/journal/pop/20/6/10.1063/1.4810794
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/6/10.1063/1.4810794
2013-06-14
2014-07-24

Abstract

We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/6/1.4810794.html;jsessionid=5idli6eq5hggp.x-aip-live-03?itemId=/content/aip/journal/pop/20/6/10.1063/1.4810794&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/6/10.1063/1.4810794
10.1063/1.4810794
SEARCH_EXPAND_ITEM