1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Aspects of collisionless magnetic reconnection in asymmetric systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/6/10.1063/1.4811467
1.
1. J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, J. Geophys. Res. 106, 3715, doi:10.1029/1999JA900449 (2001).
http://dx.doi.org/10.1029/1999JA900449
2.
2. H. Karimabadi, W. Daughton, and J. D. Scudder, Geophys. Res. Lett. 34, L13104, doi:10.1029/2007GL030306 (2007).
http://dx.doi.org/10.1029/2007GL030306
3.
3. M. Hesse, K. Schindler, J. Birn, and M. Kuznetsova, Phys. Plasmas 6, 1781 (1999).
http://dx.doi.org/10.1063/1.873436
4.
4. M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, and S. Zenitani, Space Sci. Rev. 160, 323 (2011).
http://dx.doi.org/10.1007/s11214-010-9740-1
5.
5. M. Hesse, S. Zenitani, M. Kuznetsova, and A. Klimas, Phys. Plasmas 16, 102106 (2009).
http://dx.doi.org/10.1063/1.3246005
6.
6. J. Birn, J. Borovsky, M. Hesse, and K. Schindler, Phys. Plasmas 17, 052108 (2010).
http://dx.doi.org/10.1063/1.3429676
7.
7. N. Aunai, G. Belmont, and R. Smets, Phys. Plasmas 18, 122901 (2011).
http://dx.doi.org/10.1063/1.3664320
8.
8. B. U. O. Sonnerup, J. Geophys. Res. 79, 1546, doi:10.1029/JA079i010p01546 (1974).
http://dx.doi.org/10.1029/JA079i010p01546
9.
9. W. D. Gonzales and F. S. Mozer, J. Geophys. Res. 79, 4186, doi:10.1029/JA079i028p04186 (1974).
http://dx.doi.org/10.1029/JA079i028p04186
10.
10. S. W. Cowley, J. Geophys. Res. 81, 3455, doi:10.1029/JA081i019p03455 (1976).
http://dx.doi.org/10.1029/JA081i019p03455
11.
11. P. A. Cassak and M. A. Shay, Phys. Plasmas 14, 102114 (2007).
http://dx.doi.org/10.1063/1.2795630
12.
12. P. L. Pritchett, J. Geophys. Res. 113, A06210, doi:10.1029/2007JA012930 (2008).
http://dx.doi.org/10.1029/2007JA012930
13.
13. F. S. Mozer and P. L. Pritchett, Space Sci. Rev. 158, 119 (2011).
http://dx.doi.org/10.1007/s11214-010-9681-8
14.
14. D. G. Sibeck, Ann. Geophys. 27, 895 (2009).
http://dx.doi.org/10.5194/angeo-27-895-2009
15.
15. M. Swisdak and J. F. Drake, Geophys. Res. Lett. 34, L11106, doi:10.1029/2007GL029815 (2007).
http://dx.doi.org/10.1029/2007GL029815
16.
16. R. Schreier, M. Swisdak, J. F. Drake, and P. A. Cassak, Phys. Plasmas 17, 110704 (2010).
http://dx.doi.org/10.1063/1.3494218
17.
17. J. D. Huba, Phys. Plasmas 12, 012322 (2005).
http://dx.doi.org/10.1063/1.1834592
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/6/10.1063/1.4811467
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Representation of the asymptotic magnetic field values in a coordinate system rotated by an angle about the axis. The indices “” and “” refer to asymptotic values above and below the current layer, respectively. The globally constant guide field  1 for  0 becomes spatially dependent after rotation. The asymptotic values are shown on the y′ axis.

Image of FIG. 2.

Click to view

FIG. 2.

Magnetic field and current density evolution for the reference run, for which the initial guide field is uniform and of unit value.

Image of FIG. 3.

Click to view

FIG. 3.

Time evolution of the reconnection electric field for the reference run, for which the initial guide field is uniform and of unit value.

Image of FIG. 4.

Click to view

FIG. 4.

Time evolution of the reconnection electric field for the entire set of runs derived from rotating the frame of the guide field calculation by an angle . The different colors denote different runs, and the angles are denoted in the figure.

Image of FIG. 5.

Click to view

FIG. 5.

Plot of peak electric field values from Table I , and predictions based on the Cassak-Shay model, and on the magnetic energy available for magnetic reconnection. The magnetic energy-based prediction exhibits an excellent match.

Image of FIG. 6.

Click to view

FIG. 6.

Reconnection rates for the runs with and without guide field. The only difference between initial conditions is the addition of a guide field of unit value. The reconnection rates for the run without a guide field are about 60% larger.

Image of FIG. 7.

Click to view

FIG. 7.

Times selected for comparison between coplanar (top) and guide field calculation (bottom). The times are selected based on equal amounts of reconnection magnetic flux, i.e., of magnetic flux crossing the initial tangential discontinuity.

Image of FIG. 8.

Click to view

FIG. 8.

Ion demagnetization regions for the two reference times. The figure shows a dramatically larger region in the absence of an initial guide field.

Image of FIG. 9.

Click to view

FIG. 9.

Electron demagnetization regions for the two reference times. The figure shows a dramatically larger region in the absence of an initial guide field also for electrons.

Image of FIG. 10.

Click to view

FIG. 10.

Time evolution of electron and ion demagnetization region dimensions at the dominant X-point, for the two reference runs. The figure demonstrates that both ions and electrons are substantially less well confined throughout the entire coplanar simulation.

Tables

Generic image for table

Click to view

Table I.

Maximum reconnection electric field values for the set of rotation angles considered. The zero value for  −56.364° is not empirical. For this rotation, the upper magnetic field vanishes.

Loading

Article metrics loading...

/content/aip/journal/pop/20/6/10.1063/1.4811467
2013-06-19
2014-04-21

Abstract

Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/6/1.4811467.html;jsessionid=1y8whufwogkmg.x-aip-live-02?itemId=/content/aip/journal/pop/20/6/10.1063/1.4811467&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Aspects of collisionless magnetic reconnection in asymmetric systems
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/6/10.1063/1.4811467
10.1063/1.4811467
SEARCH_EXPAND_ITEM