1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Simulation of linear and nonlinear Landau damping of lower hybrid waves
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/6/10.1063/1.4812196
1.
1. L. D. Landau, J. Phys. (Moscow) 10, 25 (1946).
2.
2. T. M. O'Neil, Phys. Fluids 8, 2255 (1965).
http://dx.doi.org/10.1063/1.1761193
3.
3. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).
http://dx.doi.org/10.1103/PhysRev.108.546
4.
4. G. Manfredi, Phys. Rev. Lett. 79, 2815 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2815
5.
5. M. Brunetti, F. Califano, and F. Pegoraro, Phys. Rev. E 62, 4109 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.4109
6.
6. J. R. Danielson, F. Anderegg, and C. F. Driscoll, Phys. Rev. Lett. 92, 245003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245003
7.
7. G. Brodin, Phys. Rev. Lett. 78, 1263 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1263
8.
8. M. B. Isichenko, Phys. Rev. Lett. 78, 2369 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2369
9.
9. T. H. Stix, Waves in Plasmas (AIP, New York, 1992).
10.
10. P. Bonoli, IEEE Trans. Plasma Sci. 12, 95 (1984).
http://dx.doi.org/10.1109/TPS.1984.4316302
11.
11. M. Brambilla, Plasma Phys. 18, 669 (1976).
http://dx.doi.org/10.1088/0032-1028/18/9/001
12.
12. M. Porkolab, Phys. Fluids 17, 1432 (1974).
http://dx.doi.org/10.1063/1.1694910
13.
13. M. Porkolab, Phys. Fluids 20, 2058 (1977).
http://dx.doi.org/10.1063/1.861825
14.
14. V. K. Tripathi, C. S. Liu, and C. Grebogi, Phys. Fluids 22, 301 (1979).
http://dx.doi.org/10.1063/1.862581
15.
15. P. M. Bellan and M. Porkolab, Phys. Fluids 19, 995 (1976).
http://dx.doi.org/10.1063/1.861595
16.
16. M. Porkolab et al., Phys. Rev. Lett. 53, 1229 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.1229
17.
17. J. J. Schuss, Phys. Fluids 18, 1178 (1975).
http://dx.doi.org/10.1063/1.861280
18.
18. R. E. Bell, S. Bernabei, A. Cavallo et al., Phys. Rev. Lett. 60, 1294 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1294
19.
19. R. Bingham, J. M. Dawson, and V. D. Shapiro, J. Plasma Phys. 68, 161 (2002).
http://dx.doi.org/10.1017/S0022377802001939
20.
20. D. B. Melrose, Instabilities in Space and Laboratory Plasmas (Cambridge University Press, Cambridge, 1986).
21.
21. S. Wang, Phys. Rev. E 64, 056404 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.056404
22.
22. L. Chen, Waves and Instabilities of Plasmas (World Scientific, 1987), Chap. 3.
23.
23. L. Qi and S. Wang, Phys. Plasmas 16, 062504 (2009).
http://dx.doi.org/10.1063/1.3155448
24.
24. Y. Lin, X. Wang, Z. Lin, and L. Chen, Plasma Phys. Controlled Fusion 47, 657 (2005).
http://dx.doi.org/10.1088/0741-3335/47/4/006
25.
25. Y. Lin et al., Plasma Phys. Controlled Fusion 53, 054013 (2011).
http://dx.doi.org/10.1088/0741-3335/53/5/054013
26.
26. X. Y. Wang, Y. Lin, L. Chen, and Z. Lin, Phys. Plasmas 15, 072103 (2008).
http://dx.doi.org/10.1063/1.2938732
27.
27. N. J. Fisch, “ Theory of RF current-drive,” Rev. Mod. Phys. 59, 175 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.175
28.
28. P. H. Yoon, Y. Lin, X. Y. Wang, and A. T. Y. Lui, Phys. Plasmas 15, 112103 (2008).
http://dx.doi.org/10.1063/1.3013451
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/6/10.1063/1.4812196
Loading
/content/aip/journal/pop/20/6/10.1063/1.4812196
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/6/10.1063/1.4812196
2013-06-21
2014-11-26

Abstract

The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various , and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear damping rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/6/1.4812196.html;jsessionid=v8ty8okdhx0k.x-aip-live-02?itemId=/content/aip/journal/pop/20/6/10.1063/1.4812196&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Simulation of linear and nonlinear Landau damping of lower hybrid waves
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/6/10.1063/1.4812196
10.1063/1.4812196
SEARCH_EXPAND_ITEM