1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Alfvén wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/7/10.1063/1.4813242
1.
1. S. R. Spangler and J. M. Cordes, Astrophys. J. 505, 766 (1998).
http://dx.doi.org/10.1086/306172
2.
2. A. Verdini and M. Velli, Astrophys. J. 662, 669 (2007).
http://dx.doi.org/10.1086/510710
3.
3. R. Bingham, P. K. Shukla, B. Eliasson, and L. Stenflo, J. Plasma Phys. 76, 135 (2010).
http://dx.doi.org/10.1017/S0022377809990031
4.
4. S. R. Cranmar and A. A. van Ballegooijen, Astrophys. J. 594, 573 (2003).
http://dx.doi.org/10.1086/376777
5.
5. L. C. Lee, J. R. Johnson, and Z. W. Ma, J. Geophys. Res. 99, 17405, doi:10.1029/94JA01095 (1994).
http://dx.doi.org/10.1029/94JA01095
6.
6. D. Sundkvist, V. Krasnoselskikh, P. K. Shukla, A. Vaivads, M. André, S. Buchert, and H. Remè, Nature 436, 825 (2005).
http://dx.doi.org/10.1038/nature03931
7.
7. J. R. Peterson and A. C. Fabian, Phys. Rep. 427, 1 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.12.007
8.
8. A. Lazarian, Astrophys. J. 645, L25 (2006).
http://dx.doi.org/10.1086/505796
9.
9. A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W. Hammett, G. G. Howes, E. Quataert, and T. Tatsuno, Astrophys. J., Suppl. Ser. 182, 310 (2009).
http://dx.doi.org/10.1088/0067-0049/182/1/310
10.
10. W. H. Matthaeus and M. L. Goldstein, J. Geophys. Res. 87, 6011, doi:10.1029/JA087iA08p06011 (1982).
http://dx.doi.org/10.1029/JA087iA08p06011
11.
11. B. E. Goldstein, E. J. Smith, A. Balogh, T. S. Horbury, M. L. Goldstein, and D. A. Roberts, Geophys. Res. Lett. 22, 3393, doi:10.1029/95GL03183 (1995).
http://dx.doi.org/10.1029/95GL03183
12.
12. C. Y. Tu and E. Marsch, Space Sci. Rev. 73, 1 (1995).
http://dx.doi.org/10.1007/BF00748891
13.
13. O. Alexandrova, V. Carbone, P. Veltri, and L. Sorriso-Valvo, Astrophys. J. 674, 1153 (2008).
http://dx.doi.org/10.1086/524056
14.
14. F. Sahraoui, M. L. Goldstein, P. Robert, and Y. V. Khotyaintsev, Phys. Rev. Lett. 102, 231102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.231102
15.
15. S. R. Spangler, A. H. Savage, and S. Redfield, Astrophys. J. 742, 30 (2011).
http://dx.doi.org/10.1088/0004-637X/742/1/30
16.
16. P. J. Duffett-Smith and A. C. S. Readhead, Mon. Not. R. Astron. Soc. 174, 7 (1976).
17.
17. B. J. Rickett, Annu. Rev. Astron. Astrophys. 28, 561 (1990).
http://dx.doi.org/10.1146/annurev.aa.28.090190.003021
18.
18. C. R. Gwinn, N. Bartel, and J. M. Cordes, Astrophys. J. 410, 673 (1993).
http://dx.doi.org/10.1086/172784
19.
19. J. Scalo and B. G. Elmegreen, Annu. Rev. Astron. Astrophys. 42, 275 (2004).
http://dx.doi.org/10.1146/annurev.astro.42.120403.143327
20.
20. S. R. Spangler, A. H. Savage, and S. Redfield, Nonlinear Processes Geophys. 17, 785 (2010).
http://dx.doi.org/10.5194/npg-17-785-2010
21.
21. G. G. Howes, D. J. Drake, K. D. Nielson, T. A. Carter, C. A. Kletzing, and F. Skiff, Phys. Rev. Lett. 109, 255001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.255001
22.
22. G. G. Howes and K. D. Nielson, “Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution,” Phys. Plasmas 20, 072302 (2013).
http://dx.doi.org/10.1063/1.4812805
23.
23. G. G. Howes, K. D. Nielson, and W. Dorland, “Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution,” Phys. Plasmas 20, 072303 (2013).
http://dx.doi.org/10.1063/1.4812807
24.
24. G. G. Howes, K. D. Nielson, D. J. Drake, J. W. R. Schroeder, F. Skiff, C. A. Kletzing, and T. A. Carter, “Alfvén wave collisions, the fundamental building block of plasma turbulence. III. Theory for experimental design,” Phys. Plasmas 20, 072304 (2013).
http://dx.doi.org/10.1063/1.4812808
25.
25. W. M. Elsasser, Phys. Rev. 79, 183 (1950).
http://dx.doi.org/10.1103/PhysRev.79.183
26.
26. D. Montgomery, Phys. Scr. T2A, 83 (1982).
http://dx.doi.org/10.1088/0031-8949/1982/T2A/009
27.
27. P. Goldreich and S. Sridhar, Appl. Phys. J. 438, 763 (1995).
http://dx.doi.org/10.1086/175121
28.
28. R. S. Iroshnikov, Astron. Zh. 40, 742 (1963)
28. R. S. Iroshnikov, [Sov. Astron. 7, 566 (1964)].
29.
29. R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).
http://dx.doi.org/10.1063/1.1761412
30.
30. J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, J. Plasma Phys. 29, 525 (1983).
http://dx.doi.org/10.1017/S0022377800000933
31.
31. S. Sridhar and P. Goldreich, Astrophys. J. 432, 612 (1994).
http://dx.doi.org/10.1086/174600
32.
32. D. Montgomery and W. H. Matthaeus, Astrophys. J. 447, 706 (1995).
http://dx.doi.org/10.1086/175910
33.
33. C. S. Ng and A. Bhattacharjee, Astrophys. J. 465, 845 (1996).
http://dx.doi.org/10.1086/177468
34.
34. P. Goldreich and S. Sridhar, Appl. Phys. J. 485, 680 (1997).
http://dx.doi.org/10.1086/304442
35.
35. S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000).
http://dx.doi.org/10.1017/S0022377899008284
36.
36. Y. Lithwick and P. Goldreich, Astrophys. J. 582, 1220 (2003).
http://dx.doi.org/10.1086/344676
37.
37. W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991).
http://dx.doi.org/10.1063/1.1142175
38.
38. J. E. Maggs, T. A. Carter, and R. Taylor, Phys. Plasmas 14, 052507 (2007).
http://dx.doi.org/10.1063/1.2722302
39.
39. N. Palmer, W. Gekelman, and S. Vincena, Phys. Plasmas 12, 072102 (2005).
http://dx.doi.org/10.1063/1.1930796
40.
40. C. A. Kletzing, D. J. Thuecks, F. Skiff, S. R. Bounds, and S. Vincena, Phys. Rev. Lett. 104, 095001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.095001
41.
41. D. J. Thuecks, C. A. Kletzing, F. Skiff, S. R. Bounds, and S. Vincena, Phys. Plasmas 16, 052110 (2009).
http://dx.doi.org/10.1063/1.3140037
42.
42. D. W. Auerbach, T. A. Carter, S. Vincena, and P. Popovich, Phys. Plasmas 18, 055708 (2011).
http://dx.doi.org/10.1063/1.3574506
43.
43. D. J. Drake, C. A. Kletzing, F. Skiff, G. G. Howes, and S. Vincena, Rev. Sci. Instrum. 82, 103505 (2011).
http://dx.doi.org/10.1063/1.3649950
44.
44.Note that the nonlinear term discussed here generates a y-component of the daughter Alfvén wave magnetic field. To maintain incompressibility and a divergence-free magnetic field, the pressure gradient term in Eq. (1) generates a complementary x-component of the magnetic field of the daughter Alfvén wave.
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/7/10.1063/1.4813242
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the experimental setup for the Alfvén wave turbulence experiment in the LaPD. The ASW antenna generates a small amplitude Alfvén wave (blue line) with a magnetic field polarized in the direction traveling down the mean magnetic field, , and the loop antenna generates a larger amplitude Alfvén wave (red line) with a magnetic field polarized in the direction traveling up the mean magnetic field. Reprinted with permission from Howes , Phys. Rev. Lett. , 255001 (2012). Copyright (2012) American Physical Society.

Image of FIG. 2.

Click to view

FIG. 2.

Iowa ASW antenna (a) diagram and (b) a colormap of the component with vectors indicating the perpendicular component of the magnetic field measured in mG at  = 14 m and  = 8.3 ms after the beginning of the discharge.

Image of FIG. 3.

Click to view

FIG. 3.

UCLA loop antenna (a) diagram and (b) a colormap of the component with vectors indicating the perpendicular component of the magnetic field measured in mG at  = 6.4 m and  = 8.2 ms after the beginning of the discharge. The offset in the data for the UCLA loop antenna was due to a slight biasing issue with the Elsässer probes.

Image of FIG. 4.

Click to view

FIG. 4.

Colormap of the component of the daughter wave with vectors indicating the perpendicular component of the magnetic field at  = 8.30 ms.

Image of FIG. 5.

Click to view

FIG. 5.

Color map of the predicted coupling between the loop and ASW antennas. The dark spot at ( = 3 cm,  = 7 cm) indicates the position in the plane where the nonlinear effect is predicted to have the largest amplitude.

Image of FIG. 6.

Click to view

FIG. 6.

Plot of the amplitude of the daughter wave in frequency where the maximum of the nonlinear signal occurs, ( = 3 cm,  = 5 cm, ). We show the results for when both antennas are at full power (blue), the ASW antenna is at half power and the loop antenna is at full power (green), and when the loop antenna is at half and the ASW antenna is at full (red).

Image of FIG. 7.

Click to view

FIG. 7.

Contour plots of the two-dimensional Fourier power spectrum of the (a) component of the daughter signal, (b) the component of the loop signal, (c) the component of the ASW antenna signal, and (d) is the diagram of the perpendicular wavevectors for the loop antenna (red line) and the ASW antenna (blue line). The daughter wave should be a vector sum of the type, . The bullseyes indicate the predicted values for the daughter wave. Reprinted with permission from Howes , Phys. Rev. Lett. , 255001 (2012). Copyright (2012) American Physical Society.

Tables

Generic image for table

Click to view

Table I.

Summary of the five experimental trials.

Loading

Article metrics loading...

/content/aip/journal/pop/20/7/10.1063/1.4813242
2013-07-15
2014-04-23

Abstract

Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfvén waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfvén waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfvén wave generated nonlinearly by a collision between counterpropagating Alfvén waves.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/7/1.4813242.html;jsessionid=fp19grhpfcd94.x-aip-live-06?itemId=/content/aip/journal/pop/20/7/10.1063/1.4813242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Alfvén wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/7/10.1063/1.4813242
10.1063/1.4813242
SEARCH_EXPAND_ITEM