Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/20/8/10.1063/1.4818888
1.
1. A. E. Dubinov and D. Yu. Kolotkov, IEEE Trans. Plasma Sci. 40, 1429 (2012).
http://dx.doi.org/10.1109/TPS.2012.2189026
2.
2. A. E. Dubinov and D. Yu. Kolotkov, High Energy Chem. 46, 349 (2012).
http://dx.doi.org/10.1134/S0018143912060033
3.
3. R. Z. Sagdeev, Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 23.
4.
4. J. S. Pickett, L.-J. Chen, S. W. Kahler, O. Santolík, D. A. Gurnett, B. T. Tsurutani, and A. Balogh, Ann. Geophys. 22, 2515 (2004).
http://dx.doi.org/10.5194/angeo-22-2515-2004
5.
5. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 012302 (2013).
http://dx.doi.org/10.1063/1.4775085
6.
6. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Rev. E 87, 043107 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.043107
7.
7. F. Verheest, Phys. Plasmas 16, 013704 (2009).
http://dx.doi.org/10.1063/1.3059411
8.
8. T. K. Baluku, M. A. Hellberg, and F. Verheest, Europhys. Lett. 91, 15001 (2010).
http://dx.doi.org/10.1209/0295-5075/91/15001
9.
9. F. Verheest, Phys. Plasmas 18, 083701 (2011).
http://dx.doi.org/10.1063/1.3610560
10.
10. A. Das, A. Bandyopadhyay, and K. P. Das, J. Plasma Phys. 78, 149 (2012).
http://dx.doi.org/10.1017/S002237781100050X
11.
11. B. Buti, Phys. Lett. A 76, 251 (1980).
http://dx.doi.org/10.1016/0375-9601(80)90483-1
12.
12. K. Nishihara and M. Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981).
http://dx.doi.org/10.1143/JPSJ.50.4047
13.
13. M. Tajiri and K. Nishihara, J. Phys. Soc. Jpn. 54, 572 (1985).
http://dx.doi.org/10.1143/JPSJ.54.572
14.
14. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 41, 341 (1989).
http://dx.doi.org/10.1017/S002237780001391X
15.
15. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 44, 123 (1990).
http://dx.doi.org/10.1017/S0022377800014975
16.
16. S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas 3, 3939 (1996).
http://dx.doi.org/10.1063/1.871567
17.
17. S. S. Ghosh and A. N. Sekar Iyengar, Phys. Plasmas 4, 3204 (1997).
http://dx.doi.org/10.1063/1.872461
18.
18. J. F. McKenzie, T. B. Doyle, M. A. Hellberg, and F. Verheest, J. Plasma Phys. 71, 163 (2005).
http://dx.doi.org/10.1017/S0022377804003411
19.
19. R. A. Cairns, A. A. Mamun, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709, doi:10.1029/95GL02781 (1995).
http://dx.doi.org/10.1029/95GL02781
20.
20. V. M. Vasyliunas, J. Geophys. Res. 73, 2839, doi:10.1029/JA073i009p02839 (1968).
http://dx.doi.org/10.1029/JA073i009p02839
21.
21. D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 (1991).
http://dx.doi.org/10.1063/1.859653
22.
22. M. A. Hellberg, R. L. Mace, T. K. Baluku, I. Kourakis, and N. S. Saini, Phys. Plasmas 16, 094701 (2009).
http://dx.doi.org/10.1063/1.3213388
23.
23. P. Schippers, M. Blanc, N. André, I. Dandouras, G. R. Lewis, L. K. Gilbert, A. M. Persoon, N. Krupp, D. A. Gurnett, A. J. Coates, S. M. Krimigis, D. T. Young, and M. K. Dougherty, J. Geophys. Res. 113, A07208, doi:10.1029/2008JA013098 (2008).
http://dx.doi.org/10.1029/2008JA013098
24.
24. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 19, 012106 (2012).
http://dx.doi.org/10.1063/1.3675866
25.
25. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 15, 123705 (2008).
http://dx.doi.org/10.1063/1.3042215
26.
26. F. Verheest, M. A. Hellberg, and T. K. Baluku, Phys. Plasmas 19, 032305 (2012).
http://dx.doi.org/10.1063/1.3691963
27.
27. T. K. Baluku, M. A. Hellberg, I. Kourakis, and N. S. Saini, Phys. Plasmas 17, 053702 (2010).
http://dx.doi.org/10.1063/1.3400229
28.
28. T. K. Baluku and M. A. Hellberg, Plasma Phys. Controlled Fusion 53, 095007 (2011).
http://dx.doi.org/10.1088/0741-3335/53/9/095007
29.
29. F. Verheest and M. A. Hellberg, Phys. Plasmas 17, 102312 (2010).
http://dx.doi.org/10.1063/1.3494245
30.
30. F. Verheest, Phys. Plasmas 17, 062302 (2010).
http://dx.doi.org/10.1063/1.3435275
31.
31. R. E. Ergun, C. W. Carlson, J. P. McFadden, F. S. Mozer, L. Muschietti, I. Roth, and R. J. Strangeway, Phys. Rev. Lett. 81, 826 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.826
32.
32. D. L. Newman, M. V. Goldman, and R. E. Ergun, Phys. Plasmas 9, 2337 (2002).
http://dx.doi.org/10.1063/1.1455004
33.
33. W. C. Feldman, J. R. Ashbridge, S. J. Bame, M. D. Montgomery, and S. P. Gary, J. Geophys. Res. 80, 4181, doi:10.1029/JA080i031p04181 (1975).
http://dx.doi.org/10.1029/JA080i031p04181
34.
34. S. Perraut, H. de Feraudy, A. Roux, P. M. E. Décréau, J. Paris, and L. Matson, J. Geophys. Res. 95, 5997, doi:10.1029/JA095iA05p05997 (1990).
http://dx.doi.org/10.1029/JA095iA05p05997
35.
35. V. Pierrard and M. Lazar, Sol. Phys. 267, 153 (2010).
http://dx.doi.org/10.1007/s11207-010-9640-2
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/8/10.1063/1.4818888
Loading
/content/aip/journal/pop/20/8/10.1063/1.4818888
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/8/10.1063/1.4818888
2013-08-21
2016-12-08

Abstract

Acoustic supersolitons arise when a plasma model is able to support three consecutive local extrema of the Sagdeev pseudopotential between the undisturbed conditions and an accessible root. This leads to a characteristic electric field signature, where a simple bipolar shape is enriched by subsidiary maxima. Large-amplitude nonlinear acoustic modes are investigated, using a pseudopotential approach, for plasmas containing two-temperature electrons having Boltzmann or kappa distributions, in the presence of cold fluid ions. The existence domains for positive supersolitons are derived in a methodological way, both for structure velocities and amplitudes, in terms of plasma compositional parameters. In addition, typical pseudopotentials, soliton, and electric field profiles have been given to illustrate that positive supersolitons can be found in the whole range of electron distributions from Maxwellian to a very hard nonthermal spectrum in kappa. However, it is found that the parameter ranges that support supersolitons vary significantly over the wide range of kappa considered.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/8/1.4818888.html;jsessionid=ig-SffozInnfSyO8Cvj8zP8h.x-aip-live-02?itemId=/content/aip/journal/pop/20/8/10.1063/1.4818888&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/20/8/10.1063/1.4818888&pageURL=http://scitation.aip.org/content/aip/journal/pop/20/8/10.1063/1.4818888'
Right1,Right2,Right3,