1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Influence of the gas-flow Reynolds number on a plasma column in a glass tube
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/8/10.1063/1.4819246
1.
1. X. Lu and M. Laroussi, J. Appl. Phys. 100, 063302 (2006).
http://dx.doi.org/10.1063/1.2349475
2.
2. X. Lu, Q. Xiong, Z. Xiong, J. Hu, F. Zhou, W. Gong, Y. Xian, C. Zou, Z. Tang, Z. Jiang, and Y. Pan, J. Appl. Phys. 105, 43304 (2009).
http://dx.doi.org/10.1063/1.3079503
3.
3. Y. Hong, S. Yoo, and B. Lee, J. Electrost. 69, 92 (2011).
http://dx.doi.org/10.1016/j.elstat.2011.01.002
4.
4. G. Cho, H. G. Lim, J. H. Kim, D. J. Jin, G. C. Kwon, E. H. Choi, and H. S. Uhm, IEEE Trans. Plasma Sci. 39, 1234 (2011).
http://dx.doi.org/10.1109/TPS.2011.2124473
5.
5. G. Cho, J. Kim, H. Kang, Y. Kim, G. Kwon, and H. Uhm, J. Appl. Phys. 112, 103305 (2012).
http://dx.doi.org/10.1063/1.4766756
6.
6. G. Cho, H. Kang, E. H. Choi, and H. S. Uhm, IEEE Trans. Plasma Sci. 41, 498 (2013).
http://dx.doi.org/10.1109/TPS.2012.2231948
7.
7. E. Karakas, M. Arda, and M. Laroussi, Plasma Sources Sci. Technol. 21, 034016 (2012).
http://dx.doi.org/10.1088/0963-0252/21/3/034016
8.
8. T. Kawamura and K. Kuwahara, Fluid Dyn. Res. 1, 145 (1986).
http://dx.doi.org/10.1016/0169-5983(86)90014-6
9.
9. N. Rott, Annu. Rev. Fluid Mech. 22, 1 (1990).
http://dx.doi.org/10.1146/annurev.fl.22.010190.000245
10.
10. O. Reynolds, Philos. Trans. R. Soc. 174, 935 (1883).
http://dx.doi.org/10.1098/rstl.1883.0029
11.
11. R. Mulley, Flow of Industrial Fluids: Theory and Equations (CRC Press, North Carolina, 2004), Chap. 1, p. 43.
12.
12. M. C. Potter and D. C. Wiggert, Mechanics of Fluids, 3rd ed. (Brooks/Cole, CA, 2002), Chap. 3, p. 102.
13.
13. J. John and W. Haberman, Introduction to Fluid Mechanics, 3rd ed. (Prentice Hall, New Jersey, 1988), Chap. 6, p. 156.
14.
14. S. Wu, Z. Wang, Q. Huang, X. Tan, X. Lu, and K. Ostrikov, Phys. Plasmas 20, 023503 (2013).
http://dx.doi.org/10.1063/1.4791652
15.
15. A. Gondhalekar, E. Holzhauer, and N. Heckenberg, Phys. Lett. A 46, 229 (1973).
http://dx.doi.org/10.1016/0375-9601(73)90148-5
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/8/10.1063/1.4819246
Loading
/content/aip/journal/pop/20/8/10.1063/1.4819246
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/8/10.1063/1.4819246
2013-08-23
2014-07-29

Abstract

Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by  < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 <  < 4000. For a turbulent flow beyond  > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/8/1.4819246.html;jsessionid=2gk63sco1ln9t.x-aip-live-06?itemId=/content/aip/journal/pop/20/8/10.1063/1.4819246&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of the gas-flow Reynolds number on a plasma column in a glass tube
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/8/10.1063/1.4819246
10.1063/1.4819246
SEARCH_EXPAND_ITEM