Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/20/8/10.1063/1.4819830
1.
1. E. D. Courant and H. S. Snyder, Ann. Phys. 3, 1 (1958).
http://dx.doi.org/10.1016/0003-4916(58)90012-5
2.
2. L. C. Teng, Fermi National Accelerator Laboratory Report No. FN-229, 1971.
3.
3. D. A. Edwards and L. C. Teng, IEEE Trans. Nucl. Sci. 20, 885 (1973).
http://dx.doi.org/10.1109/TNS.1973.4327279
4.
4. G. Ripken, Deutsches Elektronen-Synchrotron Internal Report No. R1-70/04, 1970.
5.
5. I. Borchardt, E. Karantzoulis, H. Mais, and G. Ripken, Deutsches Elektronen-Synchrotron Internal Report No. 87-161, 1987.
6.
6. A. V. Lebedev and S. A. Bogacz, J. Instrum. 5, P10010 (2010).
http://dx.doi.org/10.1088/1748-0221/5/10/P10010
7.
7. H. Qin and R. C. Davidson, Phys. Plasmas 16, 050705 (2009).
http://dx.doi.org/10.1063/1.3142472
8.
8. H. Qin and R. C. Davidson, Phys. Rev. ST Accel. Beams 12, 064001 (2009).
http://dx.doi.org/10.1103/PhysRevSTAB.12.064001
9.
9. M. Chung, H. Qin, and R. C. Davidson, Phys. Plasmas 17, 084502 (2010).
http://dx.doi.org/10.1063/1.3474930
10.
10. H. Qin, M. Chung, and R. C. Davidson, Phys. Rev. Lett. 103, 224802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.224802
11.
11. H. Qin and R. C. Davidson, Phys. Rev. Lett. 110, 064803 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.064803
12.
12. K J Le Couteur, Plasma Phys. 9, 457 (1967).
http://dx.doi.org/10.1088/0032-1028/9/4/308
13.
13. H. O. Funsten, Nucl. Instrum. Methods Phys. Res. A 44, 301 (1966).
http://dx.doi.org/10.1016/0029-554X(66)90164-9
14.
14. F. S. Chute, F. E. Vermeulen, and E. A. Youssef, Nucl. Instrum. Methods Phys. Res. A 82, 86 (1970).
http://dx.doi.org/10.1016/0029-554X(70)90330-7
15.
15. C. M. Tang, P. Sprangle, J. Krall, P. Serafim, and F. Mako, NRL Memorandum Report No. 6589, 1990.
16.
16. A. Morita and Y. Iwashita, Phys. Rev. ST Accel. Beams 6, 014001 (2003).
http://dx.doi.org/10.1103/PhysRevSTAB.6.014001
17.
17. D. Toprek, Nucl. Instrum. Methods Phys. Res. A 557, 397 (2006).
http://dx.doi.org/10.1016/j.nima.2005.11.121
18.
18. H. Qin and R. C. Davidson, Phys. Plasmas 18, 056708 (2011).
http://dx.doi.org/10.1063/1.3574919
19.
19. R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000).
http://dx.doi.org/10.1063/1.873902
20.
20. E. P. Gilson, R. C. Davidson, P. C. Efthimion, and R. Majeski, Phys. Rev. Lett. 92, 155002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.155002
21.
21. C. W. Roberson, A. Mondelli, and D. Chernin, Phys. Rev. Lett. 50, 507 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.507
22.
22. Y. Alexahin, Muon Accelerator Program Document No. 4358-v1, 2013.
23.
23. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Boston, 1980).
24.
24. M. de Gosson and F. Luef, Phys. Rep. 484, 131 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.08.001
25.
25. E. T. Jaynes, Probability Theory: The Logic of Science (Washington University, St. Louis, 1995).
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/8/10.1063/1.4819830
Loading
/content/aip/journal/pop/20/8/10.1063/1.4819830
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/8/10.1063/1.4819830
2013-08-29
2016-12-09

Abstract

By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linear focusing channels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/8/1.4819830.html;jsessionid=IL0af8mCEdCRyk8ImTJ5-YbD.x-aip-live-06?itemId=/content/aip/journal/pop/20/8/10.1063/1.4819830&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/20/8/10.1063/1.4819830&pageURL=http://scitation.aip.org/content/aip/journal/pop/20/8/10.1063/1.4819830'
Right1,Right2,Right3,