Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/20/9/10.1063/1.4821963
1.
1. M. Ugai, Phys. Fluids B 4, 2953 (1992).
http://dx.doi.org/10.1063/1.860458
2.
2. M. Hesse, J. Birn, and M. Kuznetsova, J. Geophys. Res. 106, 3721, doi:10.1029/1999JA001002 (2001).
http://dx.doi.org/10.1029/1999JA001002
3.
3. J. F. Drake and M. A. Shay, in “Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations,” edited by J. Birn and E. R. Priest (Cambridge University Press, Cambridge, 2007), Sec. 3.1.
4.
4. B. U. Ö. Sonnerup, “ Magnetic field reconnection,” in Solar System Plasma Physics, edited by L. J. Lanzerotti, C. F. Kennel, and E. N. Parker (North-Holland, New York, 1979), Vol. 3, p. 45.
5.
5. T. Terasawa, Geophys. Res. Lett. 10, 475, doi:10.1029/GL010i006p00475 (1983).
http://dx.doi.org/10.1029/GL010i006p00475
6.
6. M. E. Mandt, R. E. Denton, and J. F. Drake, Geophys. Res. Lett. 21, 73, doi:10.1029/93GL03382 (1994).
http://dx.doi.org/10.1029/93GL03382
7.
7. P. L. Pritchett, J. Geophys. Res. 106, 3783, doi:10.1029/1999JA001006 (2001).
http://dx.doi.org/10.1029/1999JA001006
8.
8. T. Nagai, I. Shinohara, M. Fujimoto, M. Hoshino, Y. Saito, S. Machida, and T. Mukai, J. Geophys. Res. 106, 25929, doi:10.1029/2001JA900038 (2001).
http://dx.doi.org/10.1029/2001JA900038
9.
9. M. Øieroset, T. D. Phan, M. Fujimoto, R. P. Lin, and R. P. Lepping, Nature 412, 414 (2001).
http://dx.doi.org/10.1038/35086520
10.
10. F. S. Mozer, S. D. Bale, and T. D. Phan, Phys. Rev. Lett. 89, 015002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.015002
11.
11. A. Runov, R. Nakamura, W. Baumjohann, R. A. Treumann, T. L. Zhang, M. Volwerk, Z. Vörös, A. Balogh, K.-H. Glaßmeier, B. Klecker, H. Rème, and L. Kistler, Geophys. Res. Lett. 30, 33, doi:10.1029/2002GL016730 (2003).
http://dx.doi.org/10.1029/2002GL016730
12.
12. Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsyn, Phys. Rev. Lett. 95, 055003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.055003
13.
13. W. H. Matthaeus, C. D. Cothran, M. Landreman, and M. R. Brown, Geophys. Res. Lett. 32, L23104, doi:10.1029/2005GL023973 (2005).
http://dx.doi.org/10.1029/2005GL023973
14.
14. W. Daughton, J. Scudder, and H. Karimabadi, Phys. Plasmas 13, 072101 (2006).
http://dx.doi.org/10.1063/1.2218817
15.
15. H. Karimabadi, W. Daughton, and J. Scudder, Geophys. Res. Lett. 34, L13104, doi:10.1029/2007GL030306 (2007).
http://dx.doi.org/10.1029/2007GL030306
16.
16. M. A. Shay, J. F. Drake, and M. Swisdak, Phys. Rev. Lett. 99, 155002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155002
17.
17. M. Hesse, S. Zenitani, and A. Klimas, Phys. Plasmas 15, 112102 (2008).
http://dx.doi.org/10.1063/1.3006341
18.
18. S. Zenitani, M. Hesse, A. Klimas, and M. Kuznetsova, Phys. Rev. Lett. 106, 195003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.195003
19.
19. S. Zenitani, M. Hesse, A. Klimas, C. Black, and M. Kuznetsova, Phys. Plasmas 18, 122108 (2011).
http://dx.doi.org/10.1063/1.3662430
20.
20. T. D. Phan, J. F. Drake, M. A. Shay, F. S. Mozer, and J. P. Eastwood, Phys. Rev. Lett. 99, 255002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.255002
21.
21. Y. Ren, M. Yamada, H. Ji, S. P. Gerhardt, and R. Kulsrud, Phys. Rev. Lett. 101, 085003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.085003
22.
22. T. Nagai, I. Shinohara, M. Fujimoto, A. Matsuoka, Y. Saito, and T. Mukai, J. Geophys. Res. 116, A04222, doi:10.1029/2010JA016283 (2011).
http://dx.doi.org/10.1029/2010JA016283
23.
23. S. Zenitani, I. Shinohara, and T. Nagai, Geophys. Res. Lett. 39, L11102, doi:10.1029/2012GL051938 (2012).
http://dx.doi.org/10.1029/2012GL051938
24.
24. D. Krauss-Varban and N. Omidi, Geophys. Res. Lett. 22, 3271, doi:10.1029/95GL03414 (1995).
http://dx.doi.org/10.1029/95GL03414
25.
25. Y. Lin and D. W. Swift, J. Geophys. Res. 101, 19859, doi:10.1029/96JA01457 (1996).
http://dx.doi.org/10.1029/96JA01457
26.
26. K. Higashimori and M. Hoshino, J. Geophys. Res. 117, A01220, doi:10.1029/2011JA016817 (2012).
http://dx.doi.org/10.1029/2011JA016817
27.
27. R.-F. Lottermoser, M. Scholer, and A. P. Matthews, J. Geophys. Res. 103, 4547, doi:10.1029/97JA01872 (1998).
http://dx.doi.org/10.1029/97JA01872
28.
28. K. Arzner and M. Scholer, J. Geophys. Res. 106, 3827, doi:10.1029/2000JA000179 (2001).
http://dx.doi.org/10.1029/2000JA000179
29.
29. J. Nakabayashi and S. Machida, Geophys. Res. Lett. 24, 1339, doi:10.1029/97GL01206 (1997).
http://dx.doi.org/10.1029/97GL01206
30.
30. M. S. Nakamura, M. Fujimoto, and K. Maezawa, J. Geophys. Res. 103, 4531, doi:10.1029/97JA01843 (1998).
http://dx.doi.org/10.1029/97JA01843
31.
31. N. Aunai, G. Belmont, and R. Smets, J. Geophys. Res. 116, A09232, doi:10.1029/2011JA016688 (2011).
http://dx.doi.org/10.1029/2011JA016688
32.
32. J. F. Drake, M. Swisdak, T. D. Phan, P. A. Cassak, M. A. Shay, S. T. Lepri, R. P. Lin, E. Quataert, and T. H. Zurbuchen, J. Geophys. Res. 114, A05111, doi:10.1029/2008JA013701 (2009).
http://dx.doi.org/10.1029/2008JA013701
33.
33. Y.-H. Liu, J. F. Drake, and M. Swisdak, Phys. Plasmas 18, 062110 (2011).
http://dx.doi.org/10.1063/1.3601760
34.
34. Y.-H. Liu, J. F. Drake, and M. Swisdak, Phys. Plasmas 19, 022110 (2012).
http://dx.doi.org/10.1063/1.3685755
35.
35. M. Hesse, K. Schindler, J. Birn, and M. Kuznetsova, Phys. Plasmas 6, 1781 (1999).
http://dx.doi.org/10.1063/1.873436
36.
36. P. L. Pritchett, J. Geophys. Res. 106, 25961, doi:10.1029/2001JA000016 (2001).
http://dx.doi.org/10.1029/2001JA000016
37.
37. M. A. Shay, J. F. Drake, R. E. Denton, and D. Biskamp, J. Geophys. Res. 103, 9165, doi:10.1029/97JA03528 (1998).
http://dx.doi.org/10.1029/97JA03528
38.
38. J. R. Wygant, C. A. Cattell, R. Lysak, Y. Song, J. Dombeck, J. McFadden, F. S. Mozer, C. W. Carlson, G. Parks, E. A. Lucek, A. Balogh, M. Andre, H. Reme, M. Hesse, and C. Mouikis, J. Geophys. Res. 110, A09206, doi:10.1029/2004JA010708 (2005).
http://dx.doi.org/10.1029/2004JA010708
39.
39. C. Cattell, J. Dombeck, J. Wygant, J. F. Drake, M. Swisdak, M. L. Goldstein, W. Keith, A. Fazakerley, M. André, E. Lucek, and A. Balogh, J. Geophys. Res. 110, A01211, doi:10.1029/2004JA010519 (2005).
http://dx.doi.org/10.1029/2004JA010519
40.
40. K. Fujimoto and S. Machida, J. Geophys. Res. 111, A09216, doi:10.1029/2005JA011542 (2006).
http://dx.doi.org/10.1029/2005JA011542
41.
41. A. Le, J. Egedal, W. Daughton, J. F. Drake, W. Fox, and N. Katz, Geophys. Res. Lett. 37, L03106, doi:10.1029/2009GL041941 (2010).
http://dx.doi.org/10.1029/2009GL041941
42.
42. M. A. Shay, J. F. Drake, J. P. Eastwood, and T. D. Phan, Phys. Rev. Lett. 107, 065001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.065001
43.
43. A. Klimas, M. Hesse, and S. Zenitani, Phys. Plasmas 19, 042901 (2012).
http://dx.doi.org/10.1063/1.3699032
44.
44. J. Büchner and L. M. Zelenyi, Phys. Lett. A 118, 395 (1986).
http://dx.doi.org/10.1016/0375-9601(86)90268-9
45.
45. J. Büchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821, doi:10.1029/JA094iA09p11821 (1989).
http://dx.doi.org/10.1029/JA094iA09p11821
46.
46. T. W. Speiser, J. Geophys. Res. 70, 4219, doi:10.1029/JZ070i017p04219 (1965).
http://dx.doi.org/10.1029/JZ070i017p04219
47.
47. J. Chen and P. J. Palmadesso, J. Geophys. Res. 91, 1499, doi:10.1029/JA091iA02p01499 (1986).
http://dx.doi.org/10.1029/JA091iA02p01499
48.
48. J. Chen, J. Geophys. Res. 97, 15011, doi:10.1029/92JA00955 (1992).
http://dx.doi.org/10.1029/92JA00955
49.
49. Z.-D. Wang, J. Geophys. Res. 99, 5949, doi:10.1029/93JA03174 (1994).
http://dx.doi.org/10.1029/93JA03174
50.
50. M. V. Goldman, G. Lapenta, D. L. Newman, S. Markidis, and H. Che, Phys. Rev. Lett. 107, 135001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.135001
51.
51. A. Le, J. Egedal, O. Ohia, W. Daughton, H. Karimabadi, and V. S. Lukin, Phys. Rev. Lett. 110, 135004 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.135004
52.
52. W. A. Newcomb, Ann. Phys. 3, 347 (1958).
http://dx.doi.org/10.1016/0003-4916(58)90024-1
53.
53. D. P. Stern, Space Sci. Rev. 6, 147 (1966).
http://dx.doi.org/10.1007/BF00222592
54.
54. P. Wu, M. A. Shay, T. D. Phan, M. Oieroset, and M. Oka, Phys. Plasmas 18, 111204 (2011).
http://dx.doi.org/10.1063/1.3641964
55.
55. L. M. Zelenyi, M. S. Dolgonosov, A. A. Bykov, V. Yu. Popov, and Kh. V. Malova, Cosmic Res. 40, 357 (2002).
http://dx.doi.org/10.1023/A:1019846428446
56.
56. Kh. V. Malova, L. M. Zelenyi, O. V. Mingalev, I. V. Mingalev, V. Yu. Popov, A. V. Artemyev, and A. A. Petrukovich, Plasma Phys. Rep. 36, 841 (2010).
http://dx.doi.org/10.1134/S1063780X10100028
57.
57. G. R. Burkhart, T. W. Speiser, R. F. Martin, Jr., and P. B. Dusenbery, Geophys. Res. Lett. 18, 1591, doi:10.1029/91GL01518 (1991).
http://dx.doi.org/10.1029/91GL01518
58.
58. P. B. Dusenbery, R. F. Martin, Jr., and G. R. Burkhart, Chaos 2, 427 (1992).
http://dx.doi.org/10.1063/1.165886
59.
59. E. N. Parker, Phys. Rev. 107, 924 (1957).
http://dx.doi.org/10.1103/PhysRev.107.924
60.
60. B. U. Ö. Sonnerup, J. Geophys. Res. 76, 8211, doi:10.1029/JA076i034p08211 (1971).
http://dx.doi.org/10.1029/JA076i034p08211
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/9/10.1063/1.4821963
Loading
/content/aip/journal/pop/20/9/10.1063/1.4821963
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/9/10.1063/1.4821963
2013-09-25
2016-12-04

Abstract

Kinetic aspects of the ion current layer at the center of a reconnection outflow exhaust near the X-type region are investigated by a two-dimensional particle-in-cell (PIC) simulation. The layer consists of magnetized electrons and unmagnetized ions that carry a perpendicular electric current. The ion fluid appears to be nonideal, sub-Alfvénic, and nondissipative. The ion velocity distribution functions contain multiple populations, such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated coordinate system explains the ion fluid properties very well. The trapped ions are the first demonstration of the regular orbits in the chaotic particle dynamics [Chen and Palmadesso, J. Geophys. Res. , 1499 (1986)] in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/9/1.4821963.html;jsessionid=6Su9D7-MY8PznPJUOX5Wcibp.x-aip-live-03?itemId=/content/aip/journal/pop/20/9/10.1063/1.4821963&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/20/9/10.1063/1.4821963&pageURL=http://scitation.aip.org/content/aip/journal/pop/20/9/10.1063/1.4821963'
Right1,Right2,Right3,