1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Active remote detection of radioactivity based on electromagnetic signatures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/1/10.1063/1.4861633
1.
1. W. A. Hoppel, R. V. Anderson, and J. C. Willett, The Earth's Electrical Environment (The National Academies Press, 1986), p. 149.
2.
2. A. J. Peurrung, Nucl. Instrum. Methods Phys. Res., Sect. A 481, 731 (2002)
http://dx.doi.org/10.1016/S0168-9002(01)01372-9
3.
3. V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)
http://dx.doi.org/10.1063/1.3484044
4.
4. G. S. Nusinovich, P. Sprangle, C. R. Talamas, and V. L. Granatstein, J. Appl. Phys. 109, 083303 (2011).
http://dx.doi.org/10.1063/1.3572062
5.
5. G. S. Nusinovich, R. Pu, T. M. Antonsen, O. V. Sinitsyn, J. Rodgers, A. Mohamed, J. Silverman, M. Al-Sheikhly, Y. S. Dimant, G. M. Milikh, M. Yu, Glyavin, A. G. Luchinin, E. A. Kopelovich, and V. L. Granatstein, J. Infrared Millim. THz Waves 32, 380 (2011).
http://dx.doi.org/10.1007/s10762-010-9708-y
6.
6. Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Peñano, C. A. Romero-Talamas, and V. L. Granatstein, J. Appl. Phys. 112, 083303 (2012).
http://dx.doi.org/10.1063/1.4762007
7.
7. P. Sprangle, J. R. Peñano, and B. Hafizi, Phys. Rev. E 66, 046418 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.046418
8.
8. A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Penano, R. Fischer, R. Hubbard, P. Sprangle, and G. Rubel, Appl. Opt. 44, 5315 (2005).
http://dx.doi.org/10.1364/AO.44.005315
9.
9. S. Varma, Y.-H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 101, 205001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.205001
10.
10. S. Eisenmann, J. Peñano, P. Sprangle, and A. Zigler, Phys. Rev. Lett. 100, 155003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.155003
11.
11. American Institute of Physics Handbook, 3rd ed., edited by D. E. Gray (McGraw-Hill, New York, 1972), pp. 8203.
12.
12. M. H. Rees, Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, UK, 1989), p. 40.
13.
13. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer-Verlag, NY, 2010).
14.
14. R. F. Fernsler, A. W. Ali, J. R. Greig, and I. M. Vitkovitsky, “ The NRL CHMAIR Code: A Disturbed Sea Level Air Chemistry Code,” NRL Memorandum Report No. 4110, 1979.
15.
15. A. W. Ali, “ Electron Energy Loss Rates in Air,” NRL Memorandum Report No. 5400, 1984.
16.
16. L. G. Christophorou, Atomic and Molecular Radiation Physics (Wiley-Interscience, London, UK, 1971), p. 530.
17.
17. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, Appl. Phys. Lett. 98, 211102 (2011).
http://dx.doi.org/10.1063/1.3584034
18.
18. Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, Mineola, NY, 2002).
19.
19. R. Schunk and A. Nagy, Ionospheres (Cambridge University Press, Cambridge, UK, 2009).
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/1/10.1063/1.4861633
Loading
/content/aip/journal/pop/21/1/10.1063/1.4861633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/1/10.1063/1.4861633
2014-01-14
2014-12-25

Abstract

This paper presents a new concept for the remote detection of radioactive materials. The concept is based on the detection of electromagnetic signatures in the vicinity of radioactive material and can enable stand-off detection at distances greater than 100 m. Radioactive materials emit gamma rays, which ionize the surrounding air. The ionized electrons rapidly attach to oxygen molecules forming ions. The density of around radioactive material can be several orders of magnitude greater than background levels. The elevated population of extends several meters around the radioactive material. Electrons are easily photo-detached from ions by laser radiation. The photo-detached electrons, in the presence of laser radiation, initiate avalanche ionization which results in a rapid increase in electron density. The rise in electron density induces a frequency modulation on a probe beam, which becomes a direct spectral signature for the presence of radioactive material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/1/1.4861633.html;jsessionid=8h8kqtdf831p6.x-aip-live-06?itemId=/content/aip/journal/pop/21/1/10.1063/1.4861633&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Active remote detection of radioactivity based on electromagnetic signatures
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/1/10.1063/1.4861633
10.1063/1.4861633
SEARCH_EXPAND_ITEM