Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/1/10.1063/1.4861863
1.
1. B. Rossi, High-Energy Particles (Prentice-Hall, New York, 1952).
2.
2. J. K. Daugherty and A. K. Harding, Astrophys. J. 252, 337 (1982).
http://dx.doi.org/10.1086/159561
3.
3. A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.200403
4.
4. A. M. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, Phys. Rev. Lett. 105, 080402 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.080402
5.
5. E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, and H. Ruhl, Phys. Rev. Lett. 106, 035001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.035001
6.
6.See http://www.extreme-light-infrastructure.eu for the Extreme light infrastructure.
7.
7.See http://www.xcels.iapras.ru for Exawatt Center for Extreme Light Studies.
8.
8. F. Sauter, Z. Phys. 69, 742 (1931).
http://dx.doi.org/10.1007/BF01339461
9.
9. N. B. Narozhny, S. S. Bulanov, V. D. Mur, and V. S. Popov, Phys. Lett. A 330, 1 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.07.013
10.
10. S. S. Bulanov, N. B. Narozhny, V. D. Mur, and V. S. Popov, J. Exp. Theor. Phys. 102, 9 (2006).
http://dx.doi.org/10.1134/S106377610601002X
11.
11. V. I. Ritus, Trudy FIAN 111, 5 (1979)
11. V. I. Ritus, [J. Sov. Laser Res. 6, 497 (1985)];
11. A. I. Nikishov, Trudy FIAN 111, 152 (1979)
11. A. I. Nikishov, [J. Sov. Laser Res. 5, 619 (1985)].
12.
12. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, New York, 1982).
13.
13. V. N. Baier, V. M. Katkov, and V. S. Fadin, Radiation of the Relativistic Electrons (Atomizdat, Moscow, 1973).
14.
14. Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972).
15.
15. J. G. Kirk, A. R. Bell, and I. Arka, Plasma Phys. Controlled Fusion 51, 085008 (2009).
http://dx.doi.org/10.1088/0741-3335/51/8/085008
16.
16. A. N. Timokhin, Mon. Not. R. Astron. Soc. 408, 2092 (2010).
http://dx.doi.org/10.1111/j.1365-2966.2010.17286.x
17.
17. I. V. Sokolov, N. M. Naumova, J. A. Nees, and G. A. Mourou, Phys. Rev. Lett. 105, 195005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.195005
18.
18. C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Phys. Rev. Lett. 108, 165006 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.165006
19.
19. E. N. Nerush and I. Yu. Kostyukov, Nucl. Instrum. Methods Phys Res. A 653, 7 (2011).
http://dx.doi.org/10.1016/j.nima.2011.02.065
20.
20. N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, and H. Ruhl, Phys. Rev. ST Accel. Beams 14, 054401 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.054401
21.
21. E. N. Nerush, V. F. Bashmakov, and I. Yu. Kostyukov, Phys. Plasmas 18, 083107 (2011).
http://dx.doi.org/10.1063/1.3624481
22.
22. R. Duclous, J. G. Kirk, and A. R. Bell, Plasma Phys. Controlled Fusion 53, 015009 (2011).
http://dx.doi.org/10.1088/0741-3335/53/1/015009
23.
23. A. I. Akhiezer, N. P. Merenkov, and A. P. Rekalo, J. Phys. G: Nucl. Part. Phys. 20, 14991514 (1994).
http://dx.doi.org/10.1088/0954-3899/20/9/018
24.
24. S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, Phys. Rev. Lett. 105, 220407 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.220407
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/1/10.1063/1.4861863
Loading
/content/aip/journal/pop/21/1/10.1063/1.4861863
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/1/10.1063/1.4861863
2014-01-21
2016-09-30

Abstract

Development of quantum electrodynamical (QED) cascades in a standing electromagnetic wave for circular and linear polarizations is simulated numerically with a 3D PIC-MC code. It is demonstrated that for the same laser energy the number of particles produced in a circularly polarized field is greater than in a linearly polarized field, though the acquiring mean energy per particle is larger in the latter case. The qualitative model of laser-assisted QED cascades is extended by including the effect of polarization of the field. It turns out that cascade dynamics is notably more complicated in the case of linearly polarized field, where separation into the qualitatively different “electric” and “magnetic” regions (where the electric field is stronger than the magnetic field and vice versa) becomes essential. In the “magnetic” regions, acceleration is suppressed, and moreover the high-energy electrons are even getting cooled by photon emission. The volumes of the “electric” and “magnetic” regions evolve periodically in time and so does the cascade growth rate. In contrast to the linear polarization, the charged particles can be accelerated by circularly polarized wave even in “magnetic region.” The “electric” and “magnetic” regions do not evolve in time, and cascade growth rate almost does not depend on time for circular polarization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/1/1.4861863.html;jsessionid=f1wA_1v6s8MwNHVvzmPZfySi.x-aip-live-03?itemId=/content/aip/journal/pop/21/1/10.1063/1.4861863&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/1/10.1063/1.4861863&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/1/10.1063/1.4861863'
Right1,Right2,Right3,