Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/10/10.1063/1.4900763
1.
1. M. I. Stockman, Phys. Today 64(2), 39 (2011).
http://dx.doi.org/10.1063/1.3554315
2.
2. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005).
http://dx.doi.org/10.1063/1.1951057
3.
3. J. L. West and N. J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003).
http://dx.doi.org/10.1146/annurev.bioeng.5.011303.120723
4.
4. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, Opt. Express 19, 22024 (2011).
http://dx.doi.org/10.1364/OE.19.022024
5.
5. F. J. G. de Abajo, Rev. Mod. Phys. 82, 209 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.209
6.
6. V. N. Neelavathi, R. H. Ritchie, and W. Brandt, Phys. Rev. Lett. 33, 302 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.302
7.
7. E. Takhtamirov and R. V. N. Melnik, Phys. Rev. B 84, 045313 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045313
8.
8. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
http://dx.doi.org/10.1103/PhysRev.106.874
9.
9. N. Takimoto, Phys. Rev. 146, 366 (1966).
http://dx.doi.org/10.1103/PhysRev.146.366
10.
10. M. Šunjić and A. A. Lucas, Phys. Rev. B 3, 719 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.719
11.
11. A. Eguiluz, Phys. Rev. B 19, 1689 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.1689
12.
12. R. H. Ritchie and A. L. Marusak, Surf. Sci. 4, 234 (1966).
http://dx.doi.org/10.1016/0039-6028(66)90003-3
13.
13. G. Barton, Rep. Prog. Phys. 42, 963 (1979).
http://dx.doi.org/10.1088/0034-4885/42/6/001
14.
14. C. Schwartz and W. L. Schaich, Phys. Rev. B 26, 7008 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.7008
15.
15. I. Villo-Perez, Z. L. Mišković, and N. R. Arista, in Trends in Nanophysics, edited by A. Aldea and V. Bârsan ( Springer, Berlin, 2010), p. 217.
16.
16. K. Dharamvir, B. Singla, K. N. Pathak, and V. V. Paranjape, Phys. Rev. B 48, 12330 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.12330
17.
17. J. F. Dobson, Phys. Rev. B 46, 10163 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.10163
18.
18. F. J. García de Abajo and P. M. Echenique, Phys. Rev. B 45, 8771 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8771
19.
19. J. Osma and F. J. García de Abajo, Phys. Rev. A 56, 2032 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.2032
20.
20. C. Ciracì, J. B. Pendry, and D. R. Smith, Chem. Phys. Chem. 14, 1109 (2013).
21.
21. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, Science 337, 1072 (2012).
http://dx.doi.org/10.1126/science.1224823
22.
22. C. David and F. J. G. de Abajo, J. Phys. Chem. C 115, 19470 (2011).
http://dx.doi.org/10.1021/jp204261u
23.
23. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, Nano Lett. 12, 3308 (2012).
http://dx.doi.org/10.1021/nl301478n
24.
24. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, Phys. Rev. B 84, 121412(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.121412
25.
25. C. F. von Weizsäcker, Z. Phys. 96, 431 (1935);
http://dx.doi.org/10.1007/BF01337700
25. D. A. Kirzhnits, Sov. Phys. JETP 5, 64 (1957).
26.
26. C. H. Hodges, Can. J. Phys. 51, 1428 (1973).
http://dx.doi.org/10.1139/p73-189
27.
27. B. P. van Zyl, A. Farrell, E. Zaremba, J. Towers, P. Pisarski, and D. A. W. Hutchinson, Phys. Rev. A 89, 022503 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.022503
28.
28. M. Marklund, G. Brodin, L. Stenflo, and C. S. Liu, EPL 84, 17006 (2008).
http://dx.doi.org/10.1209/0295-5075/84/17006
29.
29. F. Haas, G. Manfredi, and M. Feix, Phys. Rev. E 62, 2763 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.2763
30.
30. G. Manfredi and F. Haas, Phys. Rev. B 64, 075316 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075316
31.
31. C. L. Gardner and C. Ringhofer, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 58, 780 (1998).
http://dx.doi.org/10.1137/S0036139996303907
32.
32. C. Chainais-Hillairet, M. Gisclon, and A. Jüngel, Numer. Methods Part. Differ. Eqs. 27, 1483 (2011).
http://dx.doi.org/10.1002/num.20592
33.
33. L. Chen and M. Dreher, in Partial Differential Equations and Spectral Theory, edited by M. Demuth, B.-W. Schulze, and I. Witt ( Birkhäuser, Basel, 2011), Vol. 211, p. 1.
34.
34. F. Haas, Quantum Plasmas: An Hydrodynamic Approach ( Springer, New York, 2011).
35.
35. P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 83, 885 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.885
36.
36. C. Z. Li, Y. H. Song, and Y. N. Wang, Phys. Lett. A 372, 4500 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.04.034
37.
37. C. Z. Li, Y. H. Song, and Y. N. Wang, Chin. Phys. Lett. 25, 2981 (2008).
http://dx.doi.org/10.1088/0256-307X/25/8/067
38.
38. C. Z. Li, Y. H. Song, and Y. N. Wang, Phys. Rev. A 79, 062903 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.062903
39.
39. P. Halevi and R. Fuchs, J. Phys. C: Solid State Phys. 17, 3869 (1984).
http://dx.doi.org/10.1088/0022-3719/17/21/017
40.
40. J. Aizpurua and A. Rivacoba, Phys. Rev. B 78, 035404 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035404
41.
41. A. Moreau, C. Ciracì, and D. R. Smith, Phys. Rev. B 87, 045401 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.045401
42.
42. J. F. Dobson and H. M. Le, J. Mol. Struct.: THEOCHEM 501–502, 327 (2000).
http://dx.doi.org/10.1016/S0166-1280(99)00443-1
43.
43. R. A. Baragiola, C. A. Dukes, and P. Riccardi, Nucl. Instrum. Methods Phys. Res. B 182, 73 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00723-6
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/10/10.1063/1.4900763
Loading
/content/aip/journal/pop/21/10/10.1063/1.4900763
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/10/10.1063/1.4900763
2014-10-29
2016-09-26

Abstract

We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/10/1.4900763.html;jsessionid=EWUq3d_mWudJMR7qG8YxC2q1.x-aip-live-06?itemId=/content/aip/journal/pop/21/10/10.1063/1.4900763&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/10/10.1063/1.4900763&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/10/10.1063/1.4900763'
Right1,Right2,Right3,