Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. K. Li, F. H. Segui, J. R. Rygg, J. A. Frenje, M. Manuel, R. D. Petrasso, R. Betti, J. Delettrez, J. P. Knauer, F. Marshall, D. D. Meyerhofer, D. Shvarts, V. A. Smalyuk, C. Stoeckl, O. L. Landen, R. P. J. Town, C. A. Back, and J. D. Kilkenny, Phys. Rev. Lett. 100, 225001 (2008).
2. J. R. Rygg, F. H. Seguin, C. K. Li, J. A. Frenje, M. J. E. Manuel, R. D. Petrasso, R. Betti, J. A. Delettrez, O. V. Gotchev, J. P. Knauer, D. D. Meyerhofer, F. J. Marshall, C. Stoeckl, and W. Theobald, Science 319, 1223 (2008).
3. P. A. Amendt, J. L. Milovich, S. C. Wilks, C. K. Li, R. D. Petrasso, and F. H. Seguin, Plasma Phys. Controlled Fusion 51, 124048 (2009).
4. P. A. Amendt, S. C. Wilks, C. Bellei, C. K. Li, and R. D. Petrasso, Phys. Plasmas 18, 056308 (2011).
5. D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, Nature Phys. 8, 95 (2012).
6. R. Sagdeev, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4.
7. D. A. Tidman and N. A. Krall, Shock Waves in Collisionless Plasmas (Wiley Interscience, New York, 1971), p. 166.
8. L. C. Woods, Plasma Phys. 13, 289 (1971).
9. R. J. Taylor, D. R. Baker, and H. Ikezi, Phys. Rev. Lett. 24, 206 (1970).
10. D. W. Forslund and J. P. Freidberg, Phys. Rev. Lett. 27, 1189 (1971).
11. F. Fuiza, A. Stockem, E. Boella, R. A. Fonseca, L. O. Silva, D. Haberberger, S. Tochitsky, C. Gong, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 109, 215001 (2012).
12. I. R. Smirnovskii, J. Appl. Mech. Tech. Phys. 39, 335 (1998).
13. I. R. Smirnovskii, Plasma Phys. Rep. 26, 225 (2000).
14. A. Stockem, E. Boella, F. Fiuza, and L. O. Silva, Phys. Rev. E 87, 043116 (2013).

Data & Media loading...


Article metrics loading...



We propose a theory to describe laminar ion sound structures in a collisionless plasma. Reflection of a small fraction of the upstream ions converts the well known ion acoustic soliton into a structure with a steep potential gradient upstream and with downstream oscillations. The theory provides a simple interpretation of results dating back more than forty years but, more importantly, is shown to provide an explanation for recent observations on laser produced plasmas relevant to inertial fusion and to ion acceleration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd