1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Particle systems and nonlinear Landau dampinga)
a)This Special Tutorial is based on the Tutorial Lecture by 2010 Fields Medalist Cédric Villani presented at the 2011 Division of Plasma Physics meeting of the American Physical Society in Salt Lake City, Utah. Cédric Villani is Professeur at Université de Lyon; he received the Fields Medal in 2010 for his proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann equation. His awards include the Jacques Herbrand Prize of the French Academy of Science (2007), the Prize of the European Mathematical Society (2008), the Henri Poincaré Prize of the International Association for Mathematical Physics, and the Fermat Prize (2009). In 2009, he was appointed as the director of the Institut Henri Poincaré (IHP) in Paris, and part-time visitor at the Institut des Hautes Études Scientifiques (IHES).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/3/10.1063/1.4867237
1.
1. N. Simányi, Invent. Math. 177, 381 (2009).
http://dx.doi.org/10.1007/s00222-009-0182-x
2.
2. A. N. Kolmogorov, in Proceedings of the International Congress of Mathematicians (Amsterdam, 1954), Vol. 1, p. 315; English translation reprinted as an Appendix in R. H. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin/Cummings, 1978), p. 741.
3.
3. J. Féjoz, “ Démonstration du ‘théorème d'Arnold’ sur la stabilité du système planétaire (d'après Herman),” in Ergodic Theory and Dynamical Systems (Cambridge University Press, Cambridge, 2004), Vol. 24, pp. 15211582.
4.
4. L. Chierchia, Regul. Chaotic Dyn. 13(2), 130 (2008).
5.
5. C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, 1975).
6.
6. C. Cercignani, Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations (Cambridge University Press, 2000).
7.
7. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Rarefied Gases (Springer-Verlag, 1994).
8.
8. C. Villani, Handbook of Mathematical Fluid Dynamics (North-Holland, 2002), Vol. I, p. 71.
9.
9. E. M. Lifshitz and L. P. Pitaevskiĭ, Course of Theoretical Physics (Pergamon Press, 1981), Vol. 10.
10.
10. J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, 2008).
11.
11. O. E. Lanford III, Dynamical Systems, Theory and Applications, Lecture Notes in Physics (Springer, 1975), Vol. 38, p. 1.
12.
12. I. Gallagher, L. Saint-Raymond, and B. Texier, e-print arXiv: 1208.5753.
13.
13. W. Braun and K. Hepp, Commun. Math. Phys. 56, 101 (1977).
http://dx.doi.org/10.1007/BF01611497
14.
14. R. L. Dobrušin, Funktsional. Anal. i Prilozhen. 13(2), 48, 96 (1979).
15.
15. H. Neunzert, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Mathematics (Springer, 1984), Vol. 1048, p. 60.
16.
16. M. Hauray and P.-E. Jabin, Arch. Ration. Mech. Anal. 183(3), 489 (2007).
http://dx.doi.org/10.1007/s00205-006-0021-9
17.
17. C. Villani, Entropy Methods for the Boltzmann Equation, Lecture Notes in Mathematics (Springer, 2008), Vol. 1916, p. 1.
18.
18. C. Villani, Hypocoercivity (Memoirs of the American Mathematical Society, 2009), Vol. 202, No. 950.
19.
19. C. Mouhot and C. Villani, Acta Math. 207, 29 (2011).
http://dx.doi.org/10.1007/s11511-011-0068-9
20.
20. G. Backus, J. Math. Phys. 1, 178 (1960).
http://dx.doi.org/10.1063/1.1703651
21.
21. C. Villani, “ Landau damping,” in Numerical Models of Fusion (Panoramas et Synthèses, Société Mathématique de France, 2013), p. 237.
22.
22. J. Bedrossian, N. Masmoudi, and C. Mouhot, e-print arXiv: 1311.2870.
23.
23. W. Orr, Proc. Royal Irish Acad. Sec. A: Math. Phys. Sci. 27, 9 (1907).
24.
24. F. Bouchet and H. Morita, Physica D 239, 948 (2010).
http://dx.doi.org/10.1016/j.physd.2010.01.020
25.
25. J. Bedrossian and N. Masmoudi, e-print arXiv: 1306.5028.
26.
26. Zh. Lin and Ch. Zeng, Comm. Math. Phys. 306, 291 (2011).
http://dx.doi.org/10.1007/s00220-011-1246-5
27.
27. Zh. Lin and Ch. Zeng, Arch. Rat. Mech. Anal. 200, 1075 (2011).
http://dx.doi.org/10.1007/s00205-010-0384-9
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/3/10.1063/1.4867237
Loading
/content/aip/journal/pop/21/3/10.1063/1.4867237
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/3/10.1063/1.4867237
2014-03-19
2014-09-22

Abstract

Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/3/1.4867237.html;jsessionid=3nbr0n8krld4.x-aip-live-03?itemId=/content/aip/journal/pop/21/3/10.1063/1.4867237&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Particle systems and nonlinear Landau dampinga)
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/3/10.1063/1.4867237
10.1063/1.4867237
SEARCH_EXPAND_ITEM