Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/4/10.1063/1.4870632
1.
1. W. E. Drummond, J. H. Malmberg, T. M. O'Neil, and J. R. Thompson, “ Nonlinear development of the beam-plasma instability,” Phys. Fluids 13(9), 2422 (1970).
http://dx.doi.org/10.1063/1.1693255
2.
2. T. M. O'Neil, J. H. Winfrey, and J. H. Malmberg, “ Nonlinear interaction of a small cold beam and a plasma,” Phys. Fluids 14(6), 1204 (1971).
http://dx.doi.org/10.1063/1.1693587
3.
3. S. Kainer, J. Dawson, R. Shanny, and T. Coffey, “ Interaction of a highly energetic electron beam with a dense plasma,” Phys. Fluids (1958–1988) 15(3), 493 (1972).
http://dx.doi.org/10.1063/1.1693934
4.
4. W. E. Drummond and D. Pines, Nucl. Fusion (Suppl. Pt. 3), 1049 (1962).
5.
5. J. M. Dawson and R. Shanny, “ Some investigations of nonlinear behavior in one-dimensional plasmas,” Phys. Fluids (1958–1988) 11(7), 1506 (1968).
http://dx.doi.org/10.1063/1.1692136
6.
6. R. L. Morse and C. W. Nielson, “ Numerical simulation of warm two-beam plasma,” Phys. Fluids (1958–1988) 12(11), 2418 (1969).
http://dx.doi.org/10.1063/1.1692361
7.
7. T. M. O'Neil and J. H. Malmberg, “ Transition of the dispersion roots from beam-type to landau-type solutions,” Phys. Fluids (1958–1988) 11(8), 1754 (1968).
http://dx.doi.org/10.1063/1.1692190
8.
8. K. W. Gentle and J. Lohr, “ Experimental determination of the nonlinear interaction in a one dimensional beam-plasma system,” Phys. Fluids 16(9), 1464 (1973).
http://dx.doi.org/10.1063/1.1694543
9.
9. W. Bernstein, H. Leinbach, P. J. Kellogg, and S. J. Monson, “ Further laboratory measurements of the beam-plasma discharge,” J. Geophys. Res.: Space Phys. 84(9), 72717278 (1979).
http://dx.doi.org/10.1029/JA084iA12p07271
10.
10. J. R. Winckler, “ Controlled experiments in the earth's magnetosphere with artificial electron beams,” Rev. Mod. Phys. 64, 859 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.859
11.
11. T. G. Onsager and R. H. Holzworth, “ Measurement of the electron beam mode in earth's foreshock,” J. Geophys. Res.: Space Phys. 95(A4), 41754186 (1990).
http://dx.doi.org/10.1029/JA095iA04p04175
12.
12. G. K. Parks, E. Greenstadt, C. S. Wu, C. S. Lin, A. St-Marc, R. P. Lin, K. A. Anderson, C. Gurgiolo, B. Mauk, H. Reme, R. Anderson, and T. Eastman, “ Upstream particle spatial gradients and plasma waves,” J. Geophys. Res. 86, 43434354, doi:10.1029/JA086iA06p04343 (1981).
http://dx.doi.org/10.1029/JA086iA06p04343
13.
13. A. Åsnes, M. G. G. T. Taylor, A. L. Borg, B. Lavraud, R. W. H. Friedel, C. P. Escoubet, H. Laakso, P. Daly, and A. N. Fazakerley, “ Multispacecraft observation of electron beam in reconnection region,” J. Geophys. Res.: Space Phys. 113(A7), A07S30, doi:10.1029/2007JA012770 (2008).
http://dx.doi.org/10.1029/2007JA012770
14.
14. M. G. G. T. Taylor, G. D. Reeves, R. H. W. Friedel, M. F. Thomsen, R. C. Elphic, J. A. Davies, M. W. Dunlop, H. Laakso, B. Lavraud, D. N. Baker, J. A. Slavin, C. H. Perry, C. P. Escoubet, A. Masson, H. J. Opgenoorth, C. Vallat, P. W. Daly, A. N. Fazakerley, and E. A. Lucek, “ Cluster encounter with an energetic electron beam during a substorm,” J. Geophys. Res.: Space Phys. 111(A11), A11203, doi:10.1029/2006JA011666 (2006).
http://dx.doi.org/10.1029/2006JA011666
15.
15. C. W. Carlson, J. P. McFadden, R. E. Ergun, M. Temerin, W. Peria, F. S. Mozer, D. M. Klumpar, E. G. Shelley, W. K. Peterson, E. Moebius, R. Elphic, R. Strangeway, C. Cattell, and R. Pfaff, “ Fast observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating,” Geophys. Res. Lett. 25(12), 20172020, doi:10.1029/98GL00851 (1998).
http://dx.doi.org/10.1029/98GL00851
16.
16. D. L. Newman, R. M. Winglee, and M. V. Goldman, “ Theory and simulation of electromagnetic beam modes and whistlers,” Phys. Fluids 31(6), 1515 (1988).
http://dx.doi.org/10.1063/1.866691
17.
17. Y. Omura and H. Matsumoto, “ Competing processes of whistler and electrostatic instabilities in the magnetosphere,” J. Geophys. Res.: Space Phys. 92, 86498659 (1987).
http://dx.doi.org/10.1029/JA092iA08p08649
18.
18. S. Peter Gary, Y. Kazimura, H. Li, and J.-I. Sakai, “ Simulations of electron/electron instabilities: Electromagnetic fluctuations,” Phys. Plasmas 7(2), 448 (2000).
http://dx.doi.org/10.1063/1.873829
19.
19. S. Peter Gary and S. Saito, “ Broadening of solar wind strahl pitch-angles by the electron/electron instability: Particle-in-cell simulations,” Geophys. Res. Lett. 34(14), L14111, doi:10.1029/2007GL030039 (2007).
http://dx.doi.org/10.1029/2007GL030039
20.
20. D. D. Sentman, M. F. Thomsen, S. Peter Gary, W. C. Feldman, and M. M. Hoppe, “ The oblique whistler instability in the Earth's foreshock,” J. Geophys. Res. 88(A3), 2048, doi:10.1029/JA088iA03p02048 (1983).
http://dx.doi.org/10.1029/JA088iA03p02048
21.
21. Y. Omura and H. Matsumoto, “ Computer experiments on whistler and plasma wave emissions for Spacelab-2 electron beam,” Geophys. Res. Lett. 15(4), 319322, doi:10.1029/GL015i004p00319 (1988).
http://dx.doi.org/10.1029/GL015i004p00319
22.
22. L. Borda de Agua, Y. Omura, H. Matsumoto, and A. L. Brinca, “ Competing processes of plasma wave instabilities driven by an anisotropic electron beam: Linear results and two-dimensional particle simulations,” J. Geophys. Res. 101(96), 1547515490, doi:10.1029/96JA00002 (1996).
http://dx.doi.org/10.1029/96JA00002
23.
23. Y. L. Zhang, H. Matsumoto, and Y. Omura, “ Linear and nonlinear interactions of an electron beam with oblique whistler and electrostatic waves in the magnetosphere,” J. Geophys. Res. 98, 2135321363, doi:10.1029/93JA01937 (1993).
http://dx.doi.org/10.1029/93JA01937
24.
24. S. Peter Gary, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series (Cambridge University Press, 1993).
25.
25. K. Liu, S. P. Gary, and D. Winske, “ Excitation of banded whistler waves in the magnetosphere,” Geophys. Res. Lett. 38, L14108, doi:10.1029/2011GL048375 (2011).
http://dx.doi.org/10.1029/2011GL048375
26.
26. P. D. Noerdlinger and A. KoMin Yui, “ Anisotropic compression of a relativistic plasma,” Phys. Fluids 10(11), 2505 (1967).
http://dx.doi.org/10.1063/1.1762066
27.
27. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4870632
Loading
/content/aip/journal/pop/21/4/10.1063/1.4870632
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/4/10.1063/1.4870632
2014-04-09
2016-12-04

Abstract

The velocity space scattering of an anisotropic electron beam ( ) flowing along a background magnetic field through a cold plasma is investigated using both linear theory and 2D particle-in-cell simulations. Here, ⊥ and represent the directions perpendicular and parallel to , respectively. In this scenario, we find that two primary instabilities contribute to the scattering in electron pitch angle: an electrostatic electron beam instability and a predominantly parallel-propagating electromagnetic whistler anisotropy instability. Our results show that at relative beam densities and beam temperature anisotropies , the electrostatic beam instability grows much faster than the whistler instabilities for a reasonably fast hot beam. The enhanced fluctuating fields from the beam instability scatter the beam electrons, slowing their average speed and increasing their parallel temperature, thereby increasing their pitch angles. In an inhomogeneous magnetic field, such as the geomagnetic field, this could result in beam electrons scattered out of the loss cone. After saturation of the electrostatic instability, the parallel-propagating whistler anisotropy instability shows appreciable growth, provided that the beam density and late-time anisotropy are sufficiently large. Although the whistler anisotropy instability acts to pitch-angle scatter the electrons, reducing perpendicular energy in favor of parallel energy, these changes are weak compared to the pitch-angle increases resulting from the deceleration of the beam due to the electrostatic instability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/4/1.4870632.html;jsessionid=VK0nnnN_5S02xczuIDyyG08n.x-aip-live-02?itemId=/content/aip/journal/pop/21/4/10.1063/1.4870632&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/4/10.1063/1.4870632&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/4/10.1063/1.4870632'
Right1,Right2,Right3,