1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/4/10.1063/1.4870760
1.
1. H. C. Aveiro, D. L. Hysell, R. G. Caton, K. M. Groves, J. Klenzing, R. F. Pfaff, R. Stoneback, and R. A. Heelis, J. Geophys. Res. 117, A03325, doi:10.1029/2011JA017077 (2012).
http://dx.doi.org/10.1029/2011JA017077
2.
2. A. Mahalov and M. Moustaoui, J. Fluids Eng. 136(2 ), 021202 (2013).
http://dx.doi.org/10.1115/1.4025657
3.
3. C. Huang and M. Kelley, J. Geophys. Res. 101(A11 ), 24533, doi:10.1029/96JA02327 (1996).
http://dx.doi.org/10.1029/96JA02327
4.
4. C. Huang, G. J. Sofko, and M. Kelley, J. Geophys. Res. 103(A4 ), 6977, doi:10.1029/97JA03176 (1998).
http://dx.doi.org/10.1029/97JA03176
5.
5. T. Yokoyama, M. Yamamoto, and S. Fukao, J. Geophys. Res. 108(A2 ), 1054, doi:10.1029/2002JA009513 (2003).
http://dx.doi.org/10.1029/2002JA009513
6.
6. T. Yokoyama, T. Horinouchi, M. Yamamoto, and S. Fukao, J. Geophys. Res. 109, A12307, doi:10.1029/2004JA010508 (2004).
http://dx.doi.org/10.1029/2004JA010508
7.
7. G. Haller, Phys. D 149, 248 (2001).
http://dx.doi.org/10.1016/S0167-2789(00)00199-8
8.
8. G. Haller, Phys. D 240, 574 (2011).
http://dx.doi.org/10.1016/j.physd.2010.11.010
9.
9. G. Haller and F. J. Beron-Vera, Phys. D 241, 1680 (2012).
http://dx.doi.org/10.1016/j.physd.2012.06.012
10.
10. D. Blazevski and G. Haller, Phys. D 273–274, 46 (2014).
http://dx.doi.org/10.1016/j.physd.2014.01.007
11.
11. G. Haller, J. Fluid Mech. 525, 1 (2005).
http://dx.doi.org/10.1017/S0022112004002526
12.
12. T.-Y. Koh and B. Legras, Chaos 12(2 ), 382 (2002).
http://dx.doi.org/10.1063/1.1480442
13.
13. W. Tang, M. Mathur, G. Haller, D. Hahn, and F. Ruggiero, J. Atmos. Sci. 67, 2307 (2010).
http://dx.doi.org/10.1175/2010JAS3176.1
14.
14. M. J. Olascoaga and G. Haller, Proc. Natl. Acad. Sci. U. S. A. 109, 4738 (2012).
http://dx.doi.org/10.1073/pnas.1118574109
15.
15. T. Peacock and J. Dabiri, Chaos 20, 017501 (2010).
http://dx.doi.org/10.1063/1.3278173
16.
16. W. Tang and A. Mahalov, Phys. Plasmas 20, 032305 (2013).
http://dx.doi.org/10.1063/1.4794735
17.
17. M. Yamamoto, S. Fukao, R. F. Woodman, T. Ogawa, T. Tsuda, and S. Kato, J. Geophys. Res. 96, 15943, doi:10.1029/91JA01321 (1991).
http://dx.doi.org/10.1029/91JA01321
18.
18. M. Kelley, The Earth's Ionosphere, Plasma Physics & Electrodynamics (International Geophysics), 2nd ed. (Academic Press, 2009), Vol. 96, 556 pp.
19.
19. D. C. Fritts and M. J. Alexander, Rev. Geophys. 41(1 ), 1003, doi:10.1029/2001RG000106 (2003).
http://dx.doi.org/10.1029/2001RG000106
20.
20. T. S. Lund and D. C. Fritts, J. Geophys. Res. 117, D21105, doi:10.1029/2012JD017536 (2012).
http://dx.doi.org/10.1029/2012JD017536
21.
21. W. Tang, C. P. Caulfield, and W. R. Young, J. Fluid Mech. 510, 333 (2004).
http://dx.doi.org/10.1017/S0022112004009589
22.
22. J. B. Klemp and D. R. Duran, Mon. Weather Rev. 111, 430 (1983).
http://dx.doi.org/10.1175/1520-0493(1983)111%3C0430:AUBCPI%3E2.0.CO;2
23.
23. J. R. Taylor, Ph.D. thesis, University of California, San Diego, 2008.
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4870760
Loading
/content/aip/journal/pop/21/4/10.1063/1.4870760
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/4/10.1063/1.4870760
2014-04-07
2015-03-27

Abstract

We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The corresponding plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/4/1.4870760.html;jsessionid=1ifpj3494m11p.x-aip-live-06?itemId=/content/aip/journal/pop/21/4/10.1063/1.4870760&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4870760
10.1063/1.4870760
SEARCH_EXPAND_ITEM