NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/4/10.1063/1.4871494
1.
1. L. Sargsyan, M. Gevorgyan, H. V. Abrahamyan, G. Kostandyan, G. Paronyan, A. Samsonyan, D. Sargsyan, and P. Sinamyan, Astrophysics 55, 460470 (2012).
http://dx.doi.org/10.1007/s10511-012-9252-7
2.
2. A. D. Goulding, D. M. Alexander, F. E. Bauer, W. R. Forman, R. C. Hickox, C. Jones, J. R. Mullaney, and M. Trichas, Astrophys. J. 755, 5 (2012).
http://dx.doi.org/10.1088/0004-637X/755/1/5
3.
3. A. Dorodnitsyn, G. S. Bisnovatyi-Kogan, and T. Kallman, Astrophys. J. 741, 29 (2011).
http://dx.doi.org/10.1088/0004-637X/741/1/29
4.
4. R. Mor and B. Trakhtenbrot, Astrophys. J. Lett. 737, L36 (2011).
http://dx.doi.org/10.1088/2041-8205/737/2/L36
5.
5. T. Kawaguchi and M. Mori, Astrophys. J. 737, 105 (2011).
http://dx.doi.org/10.1088/0004-637X/737/2/105
6.
6. S. Oyabu, D. Ishihara, M. Malkan, H. Matsuhara, T. Wada, T. Nakagawa, Y. Ohyama, Y. Toba, T. Onaka, S. Takita, H. Kataza, I. Yamamura, and M. Shirahata, Astron. Astrophys. 529, A122 (2011).
http://dx.doi.org/10.1051/0004-6361/201014221
7.
7. E. Hatziminaoglou, J. Fritz, and T. H. Jarrett, MNRAS 399, 12061222 (2009).
http://dx.doi.org/10.1111/j.1365-2966.2009.15390.x
8.
8. R. Mor, H. Netzer, and M. Elitzur, Astrophys. J. 705, 298313 (2009).
http://dx.doi.org/10.1088/0004-637X/705/1/298
9.
9. A. C. Fabian, R. V. Vasudevan, and P. Gandhi, MNRAS Lett. 385, L43L47 (2008).
http://dx.doi.org/10.1111/j.1745-3933.2008.00430.x
10.
10. S. F. Hönig and T. Beckert, MNRAS 380, 11721176 (2007).
http://dx.doi.org/10.1111/j.1365-2966.2007.12157.x
11.
11. H. Netzer, “ Active galactic nuclei: basic physics and main components,” in Physics of Active Galactic Nuclei at all Scales, edited by D. Alloin, Lecture Notes in Physics (Springer Verlag, Berlin, 2006), Vol. 693.
12.
12. D. E. Osterbrock and G. J. Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd ed., (University Science Books, 2006).
13.
13. W. J. Miloch, S. V. Vladimirov, H. L. Pécseli, and J. Trulsen, New J. Phys. 11, 043005 (2009).
http://dx.doi.org/10.1088/1367-2630/11/4/043005
14.
14. A. Janiuk, B. Czerny, A. Siemiginowska, and R. Szczerba, Astrophys. J. 602, 595602 (2004).
http://dx.doi.org/10.1086/381159
15.
15. R. M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, Princeton, N.J., U.S.A., 2005).
16.
16. D. G. Swanson, Plasma Kinetic Theory (Taylor & Francis Group, USA, 2008).
17.
17. J. P. H. Goedbloed and N. S. Poedts, Principles of Magnetohydrodynamics (Cambridge University Press, Cambridge, U.K., 2004).
18.
18. C. Cremaschini and Z. Stuchlík, Int. J. Mod. Phys. D 22, 1350077 (2013).
http://dx.doi.org/10.1142/S0218271813500776
19.
19. C. Cremaschini, J. C. Miller, and M. Tessarotto, Phys. Plasmas 17, 072902 (2010).
http://dx.doi.org/10.1063/1.3455537
20.
20. C. Cremaschini, J. C. Miller, and M. Tessarotto, Phys. Plasmas 18, 062901 (2011).
http://dx.doi.org/10.1063/1.3592674
21.
21. C. Cremaschini and M. Tessarotto, Phys. Plasmas 18, 112502 (2011).
http://dx.doi.org/10.1063/1.3656978
22.
22. C. Cremaschini and M. Tessarotto, Phys. Plasmas 19, 082905 (2012).
http://dx.doi.org/10.1063/1.4748578
23.
23. C. Cremaschini and M. Tessarotto, Phys. Plasmas 20, 012901 (2013).
http://dx.doi.org/10.1063/1.4773440
24.
24. C. Cremaschini and Z. Stuchlík, Phys. Rev. E 87, 043113 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.043113
25.
25. C. Cremaschini, Z. Stuchlík, and M. Tessarotto, Phys. Plasmas 20, 052905 (2013).
http://dx.doi.org/10.1063/1.4807037
26.
26. C. Cremaschini, J. Kovář, P. Slaný, Z. Stuchlík, and V. Karas, Astrophys. J. Suppl. 209, 15 (2013).
http://dx.doi.org/10.1088/0067-0049/209/1/15
27.
27. C. Cremaschini, Z. Stuchlík, and M. Tessarotto, Phys. Rev. E 88, 033105 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.033105
28.
28. C. Cremaschini, M. Tessarotto, and J. C. Miller, Phys. Rev. Lett. 108, 101101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.101101
29.
29. A. Beklemishev and M. Tessarotto, Phys. Plasmas 6, 4487 (1999).
http://dx.doi.org/10.1063/1.873736
30.
30. A. Beklemishev and M. Tessarotto, Astron. Astrophys. 428, 1 (2004).
http://dx.doi.org/10.1051/0004-6361:20034208
31.
31. C. Cremaschini, M. Tessarotto, and Z. Stuchlík, Phys. Plasmas 21, 032902 (2014).
http://dx.doi.org/10.1063/1.4868238
32.
32. P. J. Catto, I. B. Bernstein, and M. Tessarotto, Phys. Fluids B 30, 2784 (1987).
http://dx.doi.org/10.1063/1.866045
33.
33. P. Slaný, J. Kovář, Z. Stuchlík, and V. Karas, Astrophys. J. Suppl. 205, 3 (2013).
http://dx.doi.org/10.1088/0067-0049/205/1/3
34.
34. D. A. Uzdensky and J. Goodman, Astrophys. J. 682, 608 (2008).
http://dx.doi.org/10.1086/588812
35.
35. J. Goodman and D. Uzdensky, Astrophys. J. 688, 555 (2008).
http://dx.doi.org/10.1086/592345
36.
36. J. Kovář, P. Slaný, Z. Stuchlík, V. Karas, C. Cremaschini, and J. C. Miller, Phys. Rev. D 84, 084002 (2011).
http://dx.doi.org/10.1103/PhysRevD.84.084002
37.
37. C. Cremaschini and M. Tessarotto, Phys. Rev. E 87, 032107 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.032107
38.
38. C. Cremaschini and M. Tessarotto, Int. J. Mod. Phys. A 28, 1350086 (2013).
http://dx.doi.org/10.1142/S0217751X13500863
39.
39. C. A. Agón, J. F. Pedraza, and J. Ramos-Caro, Phys. Rev. D 83, 123007 (2011).
http://dx.doi.org/10.1103/PhysRevD.83.123007
40.
40. J. Ramos-Caro, C. A. Agón, and J. F. Pedraza, Phys. Rev. D 86, 043008 (2012).
http://dx.doi.org/10.1103/PhysRevD.86.043008
41.
41. B. Paczynsky and P. J. Wiita, Astron. Astrophys. 88, 23 (1980).
42.
42. Z. Stuchlík and J. Kovář, Int. J. Mod. Phys. D 17, 2089 (2008).
http://dx.doi.org/10.1142/S021827180801373X
43.
43. E. Tejeda and S. Rosswog, MNRAS 433, 19301940 (2013).
http://dx.doi.org/10.1093/mnras/stt853
44.
44. Z. Stuchlík, P. Slaný, and J. Kovář, Classical Quant. Gravit. 26, 215013 (2009).
http://dx.doi.org/10.1088/0264-9381/26/21/215013
45.
45. Z. Stuchlík and J. Schee, J. Cosmol. Astropart. Phys. 2011(9), 18 (2011).
http://dx.doi.org/10.1088/1475-7516/2011/09/018
46.
46. Z. Stuchlík and J. Schee, Int. J. Mod. Phys. D 21, 1250031 (2012).
http://dx.doi.org/10.1142/S0218271812500319
47.
47. J. Kovář, Z. Stuchlík, and V. Karas, Class. Quantum Gravit. 25, 095011 (2008).
http://dx.doi.org/10.1088/0264-9381/25/9/095011
48.
48. J. Kovář, O. Kopáček, V. Karas and Z. Stuchlík, Class. Quantum Gravit. 27, 135006 (2010).
http://dx.doi.org/10.1088/0264-9381/27/13/135006
49.
49. O. Kopáček, V. Karas, J. Kovář, and Z. Stuchlík, ApJ 722, 12401259 (2010).
http://dx.doi.org/10.1088/0004-637X/722/2/1240
50.
50. J. Kovář, O. Kopáček, V. Karas, and Y. Kojima, Class. Quantum Gravit. 30, 025010 (2013).
http://dx.doi.org/10.1088/0264-9381/30/2/025010
51.
51. V. P. Frolov and A. A. Shoom, Phys. Rev. D 82, 084034 (2010).
http://dx.doi.org/10.1103/PhysRevD.82.084034
52.
52. A. M. Al Zahrani, V. P. Frolov, and A. A. Shoom, Phys. Rev. D 87, 084043 (2013).
http://dx.doi.org/10.1103/PhysRevD.87.084043
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4871494
Loading
/content/aip/journal/pop/21/4/10.1063/1.4871494
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/4/10.1063/1.4871494
2014-04-16
2015-05-04

Abstract

The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/4/1.4871494.html;jsessionid=3aqaxebrkvdeo.x-aip-live-02?itemId=/content/aip/journal/pop/21/4/10.1063/1.4871494&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4871494
10.1063/1.4871494
SEARCH_EXPAND_ITEM