1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/4/10.1063/1.4871721
1.
1. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Matter (Oxford University, Oxford, 2004).
2.
2. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11(2 ), 339 (2004).
http://dx.doi.org/10.1063/1.1578638
3.
3. R. D. Richtmyer, Commun. Pure. Appl. Math. 13, 297 (1960).
http://dx.doi.org/10.1002/cpa.3160130207
4.
4. E. E. Meshkov, Fluid Dyn. 4, 101 (1969).
http://dx.doi.org/10.1007/BF01015969
5.
5. V. N. Goncharov, Phys. Rev. Lett. 82(10 ), 2091 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2091
6.
6. L. Rayleigh, Proc. London Math. Soc. 14, 170 (1883).
http://dx.doi.org/10.1112/plms/s1-14.1.170
7.
7. G. Taylor, Proc. R. Soc. London, Ser. A 201, 192 (1950).
http://dx.doi.org/10.1098/rspa.1950.0052
8.
8. G. I. Bell, LANL Report No. LA-1321, 1951.
9.
9. M. S. Plesset, J. Appl. Phys. 25, 96 (1954).
http://dx.doi.org/10.1063/1.1721529
10.
10. H.-Y. Guo, X.-J. Yu, L.-F. Wang, W.-H. Ye, J.-F. Wu, and Y.-J. Li, Chin. Phys. Lett. 31(4 ), 044702 (2014).
http://dx.doi.org/10.1088/0256-307X/31/4/044702
11.
11. W. H. Ye, X. T. He, W. Y. Zhang, and M. Y. Yu, EPL 96, 35002 (2011).
http://dx.doi.org/10.1209/0295-5075/96/35002
12.
12. L. F. Wang, W. H. Ye, X. T. He, W. Y. Zhang, Z. M. Sheng, and M. Y. Yu, Phys. Plasmas 19, 100701 (2012).
http://dx.doi.org/10.1063/1.4759161
13.
13. V. N. Goncharov and O. A. Hurricane, LLNL Report No. LLNL-TR-562014, 2012.
14.
14. S. P. Regan, R. Epstein, B. A. Hammel, L. J. Suter, H. A. Scott, M. A. Barrios, D. K. Bradley, D. A. Callahan, C. Cerjan, G. W. Collins, S. N. Dixit, T. Döppner, M. J. Edwards, D. R. Farley, K. B. Fournier, S. Glenn, S. H. Glenzer, I. E. Golovkin, S. W. Haan, A. Hamza, D. G. Hicks, N. Izumi, O. S. Jones, J. D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, T. Ma, J. J. MacFarlane, A. J. MacKinnon, R. C. Mancini, R. L. McCrory, N. B. Meezan, D. D. Meyerhofer, A. Nikroo, H.-S. Park, J. Ralph, B. A. Remington, T. C. Sangster, V. A. Smalyuk, P. T. Springer, and R. P. J. Town, Phys. Rev. Lett. 111, 045001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.045001
15.
15. J. D. Lindl and W. C. Mead, Phys. Rev. Lett. 34(20 ), 1273 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.1273
16.
16. S. Bodner, Phys. Rev. Lett. 33, 761 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.761
17.
17. H. Takabe, K. Mima, L. Montierth, and R. L. Morse, Phys. Fluids 28, 3676 (1985).
http://dx.doi.org/10.1063/1.865099
18.
18. A. R. Piriz, J. Sanz, and L. F. Ibañez, Phys. Plasmas 4(4 ), 1117 (1997).
http://dx.doi.org/10.1063/1.872200
19.
19. V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, Phys. Plasmas 3(12 ), 4665 (1996).
http://dx.doi.org/10.1063/1.872078
20.
20. R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, Phys. Plasmas 5(5 ), 1446 (1998).
http://dx.doi.org/10.1063/1.872802
21.
21. S. A. Piriz, A. R. Piriz, and N. A. Tahir, Phys. Plasmas 16, 082706 (2009).
http://dx.doi.org/10.1063/1.3212592
22.
22. W. Ye, W. Zhang, and X. T. He, Phys. Rev. E 65, 57401 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.057401
23.
23. J. Sanz, J. Ramìrez, R. Ramis, R. Betti, and R. P. J. Town, Phys. Rev. Lett. 89, 195002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.195002
24.
24. J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005).
http://dx.doi.org/10.1063/1.1927542
25.
25. T. Ikegawa and K. Nishihara, Phys. Rev. Lett. 89, 115001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.115001
26.
26. L. F. Wang, W. H. Ye, Z. M. Sheng, W.-S. Don, Y. J. Li, and X. T. He, Phys. Plasmas 17, 122706 (2010).
http://dx.doi.org/10.1063/1.3517606
27.
27. L. F. Wang, W. H. Ye, and X. T. He, Phys. Plasmas 19, 012706 (2012).
http://dx.doi.org/10.1063/1.3677821
28.
28. B. A. Remington, S. W. Haan, S. G. Glendinning, J. D. Kilkenny, D. H. Munro, and R. J. Wallace, Phys. Fluids B 4(4 ), 967 (1992).
http://dx.doi.org/10.1063/1.860113
29.
29. S. V. Weber, B. A. Remington, S. W. Haan, B. G. Wilson, and J. K. Nash, Phys. Plasmas 1(11 ), 3652 (1994).
http://dx.doi.org/10.1063/1.870900
30.
30. B. A. Remington, S. V. Weber, M. M. Marinak, S. W. Haan, J. D. Kilkenny, R. J. Wallace, and G. Dimonte, Phys. Plasmas 2(1 ), 241 (1995).
http://dx.doi.org/10.1063/1.871096
31.
31. M. M. Marinak, S. G. Glendinning, R. J. Wallace, B. A. Remington, K. S. Budil, and S. W. Haan, Phys. Rev. Lett. 80(20 ), 4426 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4426
32.
32. K. S. Budil, B. A. Remington, T. A. Peyser, K. O. Mikaelian, P. L. Miller, N. C. Woolsey, W. M. Wood-Vasey, and A. M. Rubenchik, Phys. Rev. Lett. 76(24 ), 4536 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4536
33.
33. K. S. Budil, B. Lasinski, M. J. Edwards, A. S. Wan, B. A. Remington, S. V. Weber, S. G. Glendinning, L. Suter, and P. E. Stry, Phys. Plasmas 8(5 ), 2344 (2001).
http://dx.doi.org/10.1063/1.1356738
34.
34. K. Shigemori, H. Azechi, M. Nakai, M. Honda, K. Meguro, N. Miyanaga, H. Takabe, and K. Mima, Phys. Rev. Lett. 78, 250 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.250
35.
35. S. G. Glendinning, S. N. Dixit, B. A. Hammer, D. H. Kalantat, M. H. Key, J. D. Kilkenny, J. P. Knauer, D. M. Pennington, B. A. Remington, R. J. Wallace, and S. V. Weber, Phys. Rev. Lett. 78, 3318 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.3318
36.
36. T. Sakaiya, H. Azechi, M. Matsuoka, N. Izumi, M. Nakai, K. Shigemori, H. Shiraga, A. Sunahara, H. Takabe, and T. Yamanaka, Phys. Rev. Lett. 88, 145003 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.145003
37.
37. V. A. Smalyuk, S. X. Hu, V. N. Goncharov, D. D. Meyerhofer, T. C. Sangster, C. Stoeckl, and B. Yaakobi, Phys. Plasmas 15, 082703 (2008).
http://dx.doi.org/10.1063/1.2967899
38.
38. A. Casner, D. Galmiche, G. Huser, and J.-P. Jadaud, Phys. Plasmas 16, 092701 (2009).
http://dx.doi.org/10.1063/1.3224027
39.
39. A. Casner, V. A. Smalyuk, L. Masse, I. Igumenshchev, S. Liberatore, L. Jacquet, C. Chicanne, P. Loiseau, O. Poujade, D. K. Bradley, H. S. Park, and B. A. Remington, Phys. Plasmas 19, 082708 (2012).
http://dx.doi.org/10.1063/1.4737901
40.
40. X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007).
http://dx.doi.org/10.1140/epjd/e2007-00005-1
41.
41. Q. Duan, T. Chang, W. Zhang, G. Wang, and C. Wang, Chin. J. Comput. Phys. 16(6 ), 610 (1999) (in Chinese).
42.
42. F. J. D. Serduke, E. Minguez, S. J. Davidson, and C. A. Iglesias, J. Quant. Spectrosc. Radiat. Transfer 65, 527 (2000).
http://dx.doi.org/10.1016/S0022-4073(99)00094-1
43.
43. W. Ye, W. Zhang, and G. Cheng, High Power Laser Part. Beams 10(3 ), 403 (1998) (in Chinese).
44.
44. Z. Fan, S. Zhu, W. Pei, W. Ye, M. Li, X. Xu, J. Wu, Z. Dai, and L. Wang, EPL 99, 65003 (2012).
http://dx.doi.org/10.1209/0295-5075/99/65003
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4871721
Loading
/content/aip/journal/pop/21/4/10.1063/1.4871721
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/4/10.1063/1.4871721
2014-04-22
2015-07-03

Abstract

In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D , 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/4/1.4871721.html;jsessionid=4gr9f42pqlot7.x-aip-live-06?itemId=/content/aip/journal/pop/21/4/10.1063/1.4871721&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/4/10.1063/1.4871721
10.1063/1.4871721
SEARCH_EXPAND_ITEM