Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/5/10.1063/1.4873404
1.
1. M. Kotschenreuther, P. Valanju, B. Covelle, and S. Mahajan, Phys. Plasmas 20, 102507 (2013).
http://dx.doi.org/10.1063/1.4824735
2.
2. M. Kotschenreuther, P. M. Valanju, J. Wiley, T. Rognlien, S. Mahajan, and M. Pekker, in Proceedings of 2004 IAEA Fusion Energy Conference, Vilamoura, Portugal, 1–6 Nov 2004, Paper IC/P6-43, available at http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/ic_p6-43.pdf.
3.
3. M. Kotschenreuther, P. M. Valanju, S. M. Mahajan, J. C. Wiley, M. Pekker, W. L. Rowan, H. He, T. Rognlein, and D. Gates, in Proceedings of 2006 IAEA Fusion Energy Conference, Chengdu, China, 16–21 Oct 2006, Paper IC/P7-12, available at http://www-naweb.iaea.org/napc/physics/fec/fec2006/papers/ic_p7-12.pdf.
4.
4. M. Kotschenreuther, P. M. Valanju, S. M. Mahajan, and J. C. Wiley, Phys. Plasmas 14, 072502 (2007).
http://dx.doi.org/10.1063/1.2739422
5.
5. D. D. Ryutov, Phys. Plasmas 14, 064502 (2007).
http://dx.doi.org/10.1063/1.2738399
6.
6. D. D. Ryutov, R. H. Cohen, T. D. Rognlien, and M. V. Umansky, Phys. Plasmas 15, 092501 (2008).
http://dx.doi.org/10.1063/1.2967900
7.
7. D. D. Ryutov, M. A. Makowski, and M. V. Umansky, Plasma Phys. Controlled Fusion 52, 105001 (2010).
http://dx.doi.org/10.1088/0741-3335/52/10/105001
8.
8. D. N. Hill, J. Nucl. Mater. 241, 182 (1997).
http://dx.doi.org/10.1016/S0022-3115(97)80039-6
9.
9. T. Eich, P. Andrew, A. Herrmann, W. Fundamenski, A. Loarte, R. A. Pitts, and JET-EFDA Contributors, Plasma Phys. Controlled Fusion 49, 573 (2007).
http://dx.doi.org/10.1088/0741-3335/49/5/002
10.
10. D. D. Ryutov, R. H. Cohen, T. D. Rognlien, and M. V. Umansky, Plasma Phys. Controlled Fusion 54, 124050 (2012).
http://dx.doi.org/10.1088/0741-3335/54/12/124050
11.
11. H. Takase, J. Phys. Soc. Jpn. 70, 609 (2001).
http://dx.doi.org/10.1143/JPSJ.70.609
12.
12. V. A. Soukhanovskii, USBPO News, Issue 42, p. 3, 15 March 2010. See http://burningplasma.org/enews.html.
13.
13. V. A. Soukhanovskii, J.-W. Ahn, R. E. Bell, D. A. Gates, S. Gerhardt, R. Kaita, E. Kolemen, B. P. LeBlanc, R. Maingi, M. Makowski, R. Maqueda, A. G. McLean, J. E. Menard, D. Mueller, S. F. Paul, R. Raman, A. L. Roquemore, D. D. Ryutov, S. A. Sabbagh, and H. A. Scott, Nucl. Fusion 51, 012001 (2011).
http://dx.doi.org/10.1088/0029-5515/51/1/012001
14.
14. M. V. Umansky, R. H. Bulmer, R. H. Cohen, T. D. Rognlien, and D. D. Ryutov, Nucl. Fusion 49, 075005 (2009).
http://dx.doi.org/10.1088/0029-5515/49/7/075005
15.
15. T. D. Rognlien, R. H. Cohen, D. D. Ryutov, and M. V. Umansky, J. Nucl. Mater. 438, S418 (2013).
http://dx.doi.org/10.1016/j.jnucmat.2013.01.084
16.
16. M. Kotschenreuther, P. M. Valanju, S. Mahajan, L. J. Zheng, L. D. Pearlstein, R. H. Bulmer, J. Canik, and R. Maingi, in Proceedings of 2008 IAEA Fusion Energy Conference, Geneva, 13–18 Oct 2008, Paper IC/P4-7.
17.
17. F. Piras, S. Coda, B. P. Duval, B. Labit, J. Marki, S. Y. Medvedev, J.-M. Moret, A. Pitzschke, O. Sauter, and TCV Team, Phys. Rev. Lett. 105, 155003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.155003
18.
18. D. D. Ryutov, R. H. Cohen, T. D. Rognlien, and M. V. Umansky, Contrib. Plasma Phys. 52, 539 (2012).
http://dx.doi.org/10.1002/ctpp.201210046
19.
19. W. A. J. Vijvers, G. P. Canal, B. Labit, H. Reimerdes, B. Tal, S. Coda, B. P. Duval, T. Morgan, G. de Temmerman, J. J. Zielinski, and the TCV team, in Proceedings of 2012 IAEA Fusion Energy Conference, San Diego, 8–12 Oct 2012, Paper EX/P5-22.
20.
20. D. D. Ryutov, R. H. Bulmer, R. H. Cohen, D. N. Hill, L. Lao, J. E. Menard, T. W. Petrie, L. D. Pearlstein, T. D. Rognlien, P. B. Snyder, V. Soukhanovskii, and M. V. Umansky, in Proceedings of 2008 IAEA Fusion Energy Conference, Geneva, 13–18 Oct 2008, Paper IC/P4-8.
21.
21. S. L. Allen, V. A. Soukhanovskii, T. H. Osborne, E. Kolemen, J. Boedo, N. Brooks, M. Fenstermacher, R. Groebner, D. N. Hill, A. Hyatt, C. Lasnier, A. Leonard, M. Makowski, W. H. Meyer, A. McLean, T. Petrie, D. Ryutov, and J. Watkins, “Results from initial snowflake divertor physics studies on DIII-D,” in Proceedings of IAEA Fusion Energy Conference, San Diego, CA, 8–12 Oct 2012, Paper PD/1-2;
21. D. N. Hill and DIII-D Team, Nucl. Fusion 53, 104001 (2013).
http://dx.doi.org/10.1088/0029-5515/53/10/104001
22.
22. B. LaBombard, E. Marmar, J. Irby, R. Vieria, S. Wolfe, P. Bonoli, C. Fiore, R. Granetz, M. Greenwald, I. Hutchinson, A. Hubbard, J. Hughes, Y. Lin, B. Lipschultz, R. Parker, M. Porkolab, M. Reinke, J. Rice, S. Shiraiwa, J. Terry, G. Wallace, A. White, D. Whyte, and S. Wukitch, Bull. Am. Phys. Soc. 58(16), 63 (2013).
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/5/10.1063/1.4873404
Loading
/content/aip/journal/pop/21/5/10.1063/1.4873404
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/5/10.1063/1.4873404
2014-05-19
2016-09-28

Abstract

In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas , 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/5/1.4873404.html;jsessionid=T7E7U01QF0qORpR9Wh_HNOqb.x-aip-live-03?itemId=/content/aip/journal/pop/21/5/10.1063/1.4873404&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/5/10.1063/1.4873404&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/5/10.1063/1.4873404'
Right1,Right2,Right3,