Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, New York, 1993).
2. H. Karimabadi, V. Roytershteyn, M. Wan, W. H. Matthaeus, W. Daughton, P. Wu, M. Shay, B. Loring, J. Borovsky, E. Leonardis, S. C. Chapman, and T. K. M. Nakamura, Phys. Plasmas 20, 012303 (2013).
3. M. Wan, W. H. Matthaeus, H. Karimabadi, V. Roytershteyn, M. Shay, P. Wu, W. Daughton, B. Loring, and S. C. Chapman, Phys. Rev. Lett. 109, 195001 (2012).
4. J. M. TenBarge and G. G. Howes, Astrophys. J. 771, L27 (2013).
5. O. Chang, S. P. Gary, and J. Wang, Geophys. Res. Lett. 38, L22102, doi:10.1029/2011GL049827 (2011).
6. O. Chang, S. P. Gary, and J. Wang, J. Geophys. Res. 118, 2824, doi:10.1002/jgra.50365 (2013).
7. O. Chang, “ Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers,” Ph.D. dissertation (University of Southern California, 2013).
8. S. P. Gary, O. Chang, and J. Wang, Astrophys. J. 755, 142 (2012).
9. K. H. Kiyani, S. C. Chapman, F. Sahraoui, B. Hnat, O. Fauvarque, and Yu. V. Khotyaintsev, Astrophys. J. 763, 10 (2013).
10. K. T. Osman, W. H. Matthaeus, M. Wan, and A. F. Rappazzo, Phys. Rev. Lett. 108, 261102 (2012).
11. L. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, and R. Bruno, Geophys. Res. Lett. 26, 1801, doi:10.1029/1999GL900270 (1999).
12. D. Perrone, F. Valentini, S. Servidio, S. Dalena, and P. Veltri, Astrophys. J. 762, 99 (2013).
13. J. He, C. Tu, E. Marsch, S. Bourouaine, and Z. Pei, Astrophys. J. 773, 72 (2013).

Data & Media loading...


Article metrics loading...



Three-dimensional particle-in-cell simulations of whistler turbulence are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations use an initial ensemble of relatively long wavelength whistler modes and follow the temporal evolution of the fluctuations as they cascade into a broadband, anisotropic, turbulent spectrum at shorter wavelengths. For relatively small levels of the initial fluctuation energy , linear collisionless damping provides most of the dissipation of the turbulence. But as and the total dissipation increase, linear damping becomes less important and, especially at β ≪ 1, nonlinear processes become stronger. The PDFs and kurtoses of the magnetic field increments in the simulations suggest that intermittency in whistler turbulence generally increases with increasing and β. Correlation coefficient calculations imply that the current structure dissipation also increases with increasing and β, and that the nonlinear dissipation processes in these simulations are primarily associated with regions of localized current structures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd