1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa)
a)Paper GI2 1, Bull. Am. Phys. Soc. , 102 (2013).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/5/10.1063/1.4878620
1.
1. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1229
2.
2. S. M. Hooker, Nature Photon. 7, 775 (2013).
http://dx.doi.org/10.1038/nphoton.2013.234
3.
3. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://dx.doi.org/10.1038/nphys418
4.
4. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nat. Commun. 4, 1988 (2013).
http://dx.doi.org/10.1038/ncomms2988
5.
5. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2682
6.
6. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature 444, 737 (2006).
http://dx.doi.org/10.1038/nature05393
7.
7. S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, Phys. Rev. E 58, R5257 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.R5257
8.
8. C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Tóth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.215004
9.
9. A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, Cs. Tóth, and W. P. Leemans, Nat. Phys. 7, 862 (2011).
http://dx.doi.org/10.1038/nphys2071
10.
10. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219222 (2011).
http://dx.doi.org/10.1038/nphys1872
11.
11. G. R. Plateau, C. G. R. Geddes, D. B. Thorn, M. Chen, C. Benedetti, E. Esarey, A. J. Gonsalves, N. H. Matlis, K. Nakamura, C. B. Schroeder, S. Shiraishi, T. Sokollik, J. van Tilborg, Cs. Tóth, S. Trotsenko, T. S. Kim, M. Battaglia, Th. Stöhlker, and W. P. Leemans, Phys. Rev. Lett. 109, 064802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.064802
12.
12. C. Lin, J. van Tilborg, K. Nakamura, A. J. Gonsalves, N. H. Matlis, T. Sokollik, S. Shiraishi, J. Osterhoff, C. Benedetti, C. B. Schroeder, Cs. Tóth, E. Esarey, and W. P. Leemans, Phys. Rev. Lett. 108, 094801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.094801
13.
13. A. Buck, M. Nicolai, K. Schmid, C. M. S. Sears, A. Sävert, J. M. Mikhailova, F. Krausz, M. C. Kaluza, and L. Veisz, Nat. Phys. 7, 543 (2011).
http://dx.doi.org/10.1038/nphys1942
14.
14. W. P. Leemans, C. G. R. Geddes, J. Faure, Cs. Tóth, J. van Tilborg, C. B. Schroeder, E. Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. Byrd, and M. C. Martin, Phys. Rev. Lett. 91, 074802 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.074802
15.
15. A. Rousse, K. T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin, Phys. Rev. Lett. 93, 135005 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135005
16.
16. M. Fuchs, R. Weingartner, A. Popp, Z. Major, S. Becker, J. Osterhoff, I. Cortrie, B. Zeitler, R. Hörlei, G. D. Tsakiris, U. Schramm, T. P. Rowlands-Rees, S. M. Hooker, D. Habs, F. Krausz, S. Karsch, and F. Grüner, Nat. Phys. 5, 826 (2009).
http://dx.doi.org/10.1038/nphys1404
17.
17. A. R. Maier, A. Meseck, S. Reiche, C. B. Schroeder, T. Seggebrock, and F. Grüner, Phys. Rev. X 2, 031019 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.031019
18.
18. Z. Huang, Y. Ding, and C. B. Schroeder, Phys. Rev. Lett. 109, 204801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.204801
19.
19. W. P. Leemans and E. Esarey, Phys. Today 62(3), 44 (2009).
http://dx.doi.org/10.1063/1.3099645
20.
20. C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti, and W. P. Leemans, Phys. Rev. ST Accel. Beams 13, 101301 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.101301
21.
21. K. Nakajima, A. Deng, X. Zhang, B. Shen, J. Liu, R. Li, Z. Xu, T. Ostermayr, S. Petrovics, C. Klier, K. Iqbal, H. Ruhl, and T. Tajima, Phys. Rev. ST Accel. Beams 14, 091301 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.091301
22.
22. C. B. Schroeder, E. Esarey, and W. P. Leemans, Phys. Rev. ST Accel. Beams 15, 051301 (2012).
http://dx.doi.org/10.1103/PhysRevSTAB.15.051301
23.
23. W. P. Leemans, J. Daniels, A. Deshmukh, A. J. Gonsalves, A. Magana, H. S. Mao, D. E. Mittelberger, K. Nakamura, J. R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, in Proceedings of PAC 2013 (JaCoW, 2013), p. THYAA1.
24.
24.See http://www.acceleratorsamerica.org/report/ for applications of laser technology to accelerators.
25.
25. J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, AIP Conf. Proc. 1507, 147 (2012).
http://dx.doi.org/10.1063/1.4773687
26.
26. G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, Nature Photon. 7, 258 (2013).
http://dx.doi.org/10.1038/nphoton.2013.75
27.
27. G. A. Mourou, D. Hulin, and A. Galvanauskas, AIP Conf. Proc. 827, 152 (2006).
http://dx.doi.org/10.1063/1.2195207
28.
28. J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, Opt. Express 19, 17053 (2011).
http://dx.doi.org/10.1364/OE.19.017053
29.
29. L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, F. Druon, and P. Georges, Opt. Lett. 36, 4023 (2011).
http://dx.doi.org/10.1364/OL.36.004023
30.
30. A. Klenke, E. Seise, S. Demmler, J. Rothhardt, S. Breitkopf, J. Limpert, and A. Tünnermann, Opt. Express 19, 24280 (2011).
http://dx.doi.org/10.1364/OE.19.024280
31.
31. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
http://dx.doi.org/10.1109/JSTQE.2005.850241
32.
32. C. B. Schroeder, C. Benedetti, E. Esarey, and W. P. Leemans, Phys. Rev. Lett. 106, 135002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.135002
33.
33. C. B. Schroeder, C. Benedetti, E. Esarey, J. van Tilborg, and W. P. Leemans, Phys. Plasmas 18, 083103 (2011).
http://dx.doi.org/10.1063/1.3609778
34.
34. C. Benedetti, A. Sgattoni, G. Turchetti, and P. Londrillo, IEEE Trans. Plasma Sci. 36, 1790 (2008).
http://dx.doi.org/10.1109/TPS.2008.927143
35.
35. C. Benedetti, P. Londrillo, V. Petrillo, L. Serafini, A. Sgattoni, P. Tomassini, and G. Turchetti, Nucl. Instrum. Methods A 608, 94 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.064
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/5/10.1063/1.4878620
Loading
/content/aip/journal/pop/21/5/10.1063/1.4878620
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/5/10.1063/1.4878620
2014-05-27
2014-07-30

Abstract

The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/5/1.4878620.html;jsessionid=3cqbqncc5qncf.x-aip-live-03?itemId=/content/aip/journal/pop/21/5/10.1063/1.4878620&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/5/10.1063/1.4878620
10.1063/1.4878620
SEARCH_EXPAND_ITEM