Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/6/10.1063/1.4885076
1.
1. R. C. Davidson, H. Qin, P. H. Stoltz, and T. S. Wang, Phys. Rev. Spec. Top. - Accel. Beams 2, 054401 (1999).
http://dx.doi.org/10.1103/PhysRevSTAB.2.054401
2.
2. H. Qin, R. C. Davidson, and W. W. Lee, Phys. Rev. Spec. Top. - Accel. Beams 3, 084401 (2000).
http://dx.doi.org/10.1103/PhysRevSTAB.3.084401
3.
3. T.-S. F. Wang, P. J. Channell, R. J. Macek, and R. C. Davidson, Phys. Rev. Spec. Top.- Accel. Beams 6, 014204 (2003).
http://dx.doi.org/10.1103/PhysRevSTAB.6.014204
4.
4. E. A. Startsev and R. C. Davidson, Nucl. Instrum. Methods Phys. Res., Sect. A 577, 79 (2007).
http://dx.doi.org/10.1016/j.nima.2007.02.037
5.
5. F. Zimmermann, Phys. Rev. Spec. Top. - Accel. Beams 7, 124801 (2004).
http://dx.doi.org/10.1103/PhysRevSTAB.7.124801
6.
6. V. V. Usov, Astrophys. J. 320, 333 (1987).
http://dx.doi.org/10.1086/165546
7.
7. E. Asseo, Plasma Phys. Controlled Fusion 45, 853 (2003).
http://dx.doi.org/10.1088/0741-3335/45/6/302
8.
8. R. G. Greaves and C. M. Surko, Phys. Rev. Lett. 75, 3846 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3846
9.
9. S. J. Gilbert, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Phys. Plasmas 8, 4982 (2001).
http://dx.doi.org/10.1063/1.1407284
10.
10. J. F. Decker and A. M. Levine, AIP Conf. Proc. 1, 260 (1970).
http://dx.doi.org/10.1063/1.2948506
11.
11. R. M. Chervin and A. K. Sen, Plasma Phys. 15, 387 (1973).
http://dx.doi.org/10.1088/0032-1028/15/5/006
12.
12. G. Wolf, Phys. Rev. Lett. 24, 444 (1970).
http://dx.doi.org/10.1103/PhysRevLett.24.444
13.
13. F. Troyon, Phys. Fluids 14, 2069 (1971).
http://dx.doi.org/10.1063/1.1693294
14.
14. S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, and I. Takahashi, Laser Part. Beams 11, 757 (1993).
http://dx.doi.org/10.1017/S0263034600006492
15.
15. R. Betti, R. L. McCrory, and C. P. Verdon, Phys. Rev. Lett. 71, 3131 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3131
16.
16. S. Kawata, Y. Iizuka, Y. Kodera, A. I. Ogoyski, and T. Kikuchi, Nucl. Instrum. Methods Phys. Res., Sect. A 606, 152 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.188
17.
17. A. R. Piriz, L. D. Lucchio, and G. R. Prieto, Phys. Plasmas 18, 012702 (2011).
http://dx.doi.org/10.1063/1.3535400
18.
18. H. Qin, R. C. Davidson, and B. G. Logan, Nucl. Instrum. Methods Phys. Res., Sect. A 733, 203 (2014).
http://dx.doi.org/10.1016/j.nima.2013.05.068
19.
19. S. Kawata, Phys. Plasmas 19, 024503 (2012).
http://dx.doi.org/10.1063/1.3680617
20.
20. K. Nishikawa, J. Phys. Soc. Jpn. 24, 916 (1968).
http://dx.doi.org/10.1143/JPSJ.24.916
21.
21. G. J. Morales, Y. C. Lee, and R. B. White, Phys. Rev. Lett. 32, 457 (1974).
http://dx.doi.org/10.1103/PhysRevLett.32.457
22.
22. D. R. Nicholson, Phys. Fluids 24, 908 (1981).
http://dx.doi.org/10.1063/1.863461
23.
23. C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves with Electron Beams and Plasmas (World Scientific, Singapore, 1994), pp. 125128.
24.
24. V. K. Tripathi and C. S. Liu, Phys. Fluids 25, 629 (1982).
http://dx.doi.org/10.1063/1.863784
25.
25. V. K. Tripathi, S. T. Tsai, and C. S. Liu, Phys. Fluids 27, 170 (1984).
http://dx.doi.org/10.1063/1.864506
26.
26. N. Ahmad, V. K. Tripathi, M. Rafat, and M. M. Husain, Phys. Plasmas 16, 062308 (2009).
http://dx.doi.org/10.1063/1.3153552
27.
27. S. P. Kuo, Phys. Plasmas 9, 1456 (2002).
http://dx.doi.org/10.1063/1.1453471
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/6/10.1063/1.4885076
Loading
/content/aip/journal/pop/21/6/10.1063/1.4885076
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/6/10.1063/1.4885076
2014-06-26
2016-12-08

Abstract

The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/6/1.4885076.html;jsessionid=jVjT_GmXUOPMutQII7SZAo9N.x-aip-live-03?itemId=/content/aip/journal/pop/21/6/10.1063/1.4885076&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/6/10.1063/1.4885076&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/6/10.1063/1.4885076'
Right1,Right2,Right3,