1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A model code for the radiative theta pinch
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/7/10.1063/1.4886359
1.
1. S. Chaisombata, D. Ngamrungroj, P. Tangjitsomboon, and R. Mongkolnavin, Procedia Eng. 32, 929935 (2012).
http://dx.doi.org/10.1016/j.proeng.2012.02.034
2.
2. F. R. T. Luna, G. H. Cavalcanti, and A. G. Trigueiros, J. Phys. D: Appl. Phys. 31(7 ), 866 (1998).
http://dx.doi.org/10.1088/0022-3727/31/7/015
3.
3. S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF, 2014, see http://www.plasmafocus.net; http://www.intimal.edu.my/school/fas/UFLF/ (archival websites).
4.
4. S. Lee, “ Plasma focus radiative model: Review of the Lee model code,” J. Fusion Energy 33, 319335 (2014).
http://dx.doi.org/10.1007/s10894-014-9683-8
5.
5. D. E. Potter, Nucl. Fusion 18, 813823 (1978).
http://dx.doi.org/10.1088/0029-5515/18/6/008
6.
6. M. Krishnan, IEEE Trans. Plasma Sci. 40(12 ), 31893221 (2012).
http://dx.doi.org/10.1109/TPS.2012.2222676
7.
7. A. E. Robson, Phys. Fluid B3, 1481 (1991).
8.
8.See http://www.plasmafocus.net/IPFS/modelpackage/File3Appendix.pdf for NAD Khattak, anomalous Heating (LHDI), 2011.
9.
9. S. Lee, “ Radiation in Plasmas,” in Proceedings of Spring College in Plasma Physics, ICTP, Trieste, 1983, edited by B. McNamara (World Scientific Publishing Company, Singapore, 1984), Vol. II, pp. 978987.
10.
10. S. Lee and A. Serban, IEEE Trans. Plasma Sci. 24, 11011105 (1996).
http://dx.doi.org/10.1109/27.533118
11.
11.Laser and plasma technology,” in Proceedings of First Tropical College on Applied Physics, 26 December 1983-14 January 1984, edited by S. Lee, B. C. Tan, C. S. Wong, and A. C. Chew (World Scientific Publishing Company, Singapore, 1985), pp. 3862.
12.
12. R. A. Gross, Rev. Mod. Phys. 37, 724743 (1965).
http://dx.doi.org/10.1103/RevModPhys.37.724
13.
13. L. Spitzer, Physics of Fully Ionised Gases, Interscience Tracts on Physics and Astronomy (Interscience, New York, 1965).
14.
14. J. W. Shearer, Phys. Fluids 19, 1426 (1976).
http://dx.doi.org/10.1063/1.861627
15.
15. R. Pease, Proc. Phys. Soc. 70, 11 (1957).
http://dx.doi.org/10.1088/0370-1301/70/1/304
16.
16. S. Braginskii, Zh. Eksp. Teor. Fiz. 33, 645 (1957).
17.
17. K. Koshelev and N. Pereira, J. Appl. Phys. 69, 2144 (1991).
http://dx.doi.org/10.1063/1.347551
18.
18. S. Lee, S. H. Saw, and J. Ali, J. Fusion Energy 32, 4249 (2013).
http://dx.doi.org/10.1007/s10894-012-9522-8
19.
19.See www.plasmafocus.net/IPFS/modelpackage/Corona%20Calculations/C1coronaIntroduction.htm for the code for calculating the effective charge and specific heat ratio as functions of temperature.
20.
20. S. Lee, Aust. J. Phys. 36, 891895 (1983).
http://dx.doi.org/10.1071/PH830891
21.
21. E. B. Saloman, J. Phys. Chem. Ref. Data 39(3 ), 033101 (2010).
http://dx.doi.org/10.1063/1.3337661
23.
23. S. Lee, M. Eissa, A. V. Gholap, K. H. Kwek, S. Mulyodrono, S. Sapru, A. J. Smith, T. Y. Suryadi, W. Tou, C. S. Wong, W. Usada, and M. Zakaullah, Singapore J. Phys. 3, 7582 (1986).
24.
24. S. Lee, S. H. Saw, P. C. K. Lee, R. S. Rawat, and K. Devi, J. Fusion Energy 32, 5055 (2013).
http://dx.doi.org/10.1007/s10894-012-9521-9
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4886359
Loading
/content/aip/journal/pop/21/7/10.1063/1.4886359
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/7/10.1063/1.4886359
2014-07-03
2014-07-25

Abstract

A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/7/1.4886359.html;jsessionid=kid5a5e2vyi3.x-aip-live-06?itemId=/content/aip/journal/pop/21/7/10.1063/1.4886359&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A model code for the radiative theta pinch
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4886359
10.1063/1.4886359
SEARCH_EXPAND_ITEM