1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/7/10.1063/1.4888882
1.
1. V. E. Fortov, I. T. Iakubov, and A. G. Khrapak, Physics of Strongly Coupled Plasma (Clarendon Press, Oxford, 2006).
2.
2. G. Bannasch, T. C. Killian, and T. Pohl, “ Strongly coupled plasmas via Rydberg blockade of cold atoms,” Phys. Rev. Lett. 110, 253003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.253003
3.
3. H. M. Van Horn, “ Dense astrophysical plasmas,” Science 252(5004 ), 384389 (1991).
http://dx.doi.org/10.1126/science.252.5004.384
4.
4. R. L. Merlino and J. A. Goree, “ Dusty plasmas in the laboratory, industry, and space,” Phys. Today 57(7 ), 3239 (2004).
http://dx.doi.org/10.1063/1.1784300
5.
5. H. M. Thomas and G. E. Morfill, “ Melting dynamics of a plasma crystal,” Nature 379, 806809 (1996).
http://dx.doi.org/10.1038/379806a0
6.
6. J. Frenkel, Kinetic Theory of Liquids (Dover Publications, 1955).
7.
7. P. K. Kaw and A. Sen, “ Low frequency modes in strongly coupled dusty plasmas,” Phys. Plasmas 5(10 ), 3552 (1998).
http://dx.doi.org/10.1063/1.873073
8.
8. P. K. Kaw, “ Collective modes in a strongly coupled dusty plasma,” Phys. Plasmas 8(5 ), 1870 (2001).
http://dx.doi.org/10.1063/1.1348335
9.
9. J. Pramanik, G. Prasad, A. Sen, and P. K. Kaw, “ Experimental observations of transverse shear waves in strongly coupled dusty plasmas,” Phys. Rev. Lett. 88, 175001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.175001
10.
10. H. Ohta and S. Hamaguchi, “ Wave dispersion relations in Yukawa fluids,” Phys. Rev. Lett. 84, 60266029 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6026
11.
11. J. B. Weiss and J. C. McWilliams, “ Temporal scaling behavior of decaying twodimensional turbulence,” Phys. Fluids A 5(3 ), 608 (1993).
http://dx.doi.org/10.1063/1.858647
12.
12. K. S. Fine, C. F. Driscoll, J. H. Malmberg, and T. B. Mitchell, “ Measurements of symmetric vortex merger,” Phys. Rev. Lett. 67, 588591 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.588
13.
13. C. F. Driscoll, D. Z. Jin, D. A. Schecter, and D. H. E. Dubin, “ Vortex dynamics of 2d electron plasmas,” Phys. C 369(14 ), 2127 (2002).
http://dx.doi.org/10.1016/S0921-4534(01)01216-3
14.
14. P. K. Kaw, K. Nishikawa, and N. Sato, “ Rotation in collisional strongly coupled dusty plasmas in a magnetic field,” Phys. Plasmas 9(2 ), 387 2002.
http://dx.doi.org/10.1063/1.1435367
15.
15. P. K. Shukla, “ Nonlinear waves and structures in dusty plasmas,” Phys. Plasmas 10(5 ), 1619 (2003).
http://dx.doi.org/10.1063/1.1557071
16.
16. D. A. Law, W. H. Steel, B. M. Annaratone, and J. E. Allen, “ Probe-induced particle circulation in a plasma crystal,” Phys. Rev. Lett. 80, 41894192 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4189
17.
17. G. E. Morfill, H. M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, “ Condensed plasmas under microgravity,” Phys. Rev. Lett. 83, 15981601 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1598
18.
18. M. Klindworth, A. Melzer, A. Piel, and V. A. Schweigert, “ Laser-excited intershell rotation of finite coulomb clusters in a dusty plasma,” Phys. Rev. B 61, 84048410 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.8404
19.
19. G. E. Morfill, M. Rubin-Zuzic, H. Rothermel, A. V. Ivlev, B. A. Klumov, H. M. Thomas, U. Konopka, and V. Steinberg, “ Highly resolved fluid flows: “liquid plasmas” at the kinetic level,” Phys. Rev. Lett. 92, 175004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.175004
20.
20. A. K. Agarwal and G. Prasad, “ Spontaneous dust mass rotation in an unmagnetized dusty plasma,” Phys. Lett. A 309(12 ), 103108 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00127-0
21.
21. Y. Saitou and O. Ishihara, “ Dynamic circulation in a complex plasma,” Phys. Rev. Lett. 111, 185003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.185003
22.
22. U. Konopka, D. Samsonov, A. V. Ivlev, J. Goree, V. Steinberg, and G. E. Morfill, “ Rigid and differential plasma crystal rotation induced by magnetic fields,” Phys. Rev. E 61, 18901898 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.1890
23.
23. N. Sato, G. Uchida, T. Kaneko, S. Shimizu, and S. Iizuka, “ Dynamics of fine particles in magnetized plasmas,” Phys. Plasmas 8(5 ), 1786 (2001).
http://dx.doi.org/10.1063/1.1342229
24.
24. M. Schwabe, U. Konopka, P. Bandyopadhyay, and G. E. Morfill, “ Pattern formation in a complex plasma in high magnetic fields,” Phys. Rev. Lett. 106, 215004 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.215004
25.
25. M. Schwabe, S. Zhdanov, C. Räth, D. B. Graves, H. M. Thomas, and G. E. Morfill, “ Collective effects in vortex movements in complex plasmas,” Phys. Rev. Lett. 112, 115002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.115002
26.
26. J. Vranje, G. Mari, and P. K. Shukla, “ Tripolar vortices and vortex chains in dusty plasma,” Phys. Lett. A 258(46 ), 317322 (1999).
http://dx.doi.org/10.1016/S0375-9601(99)00377-1
27.
27. H. Ikezi, “ Coulomb solid of small particles in plasmas,” Phys. Fluids 29(6 ), 1764 (1986).
http://dx.doi.org/10.1063/1.865653
28.
28. M. S. Murillo, “ Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system,” High Energy Density Phys. 4(12 ), 4957 (2008).
http://dx.doi.org/10.1016/j.hedp.2007.11.001
29.
29. S. Ichimaru, H. Iyetomi, and S. Tanaka, “ Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlations,” Phys. Rep. 149(23 ), 91205 (1987).
http://dx.doi.org/10.1016/0370-1573(87)90125-6
30.
30. M. A. Berkovsky, “ Spectrum of low frequency modes in strongly coupled plasmas,” Phys. Lett. A 166(5 ), 365368 (1992).
http://dx.doi.org/10.1016/0375-9601(92)90724-Z
31.
31. S. Ichimaru, “ Strongly coupled plasmas: High density classical plasmas and degenerate electron liquids,” Rev. Modern Phys. 54(4 ), 1017 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.1017
32.
32. J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, “ LCPFCT A flux-corrected transport algorithm for solving generalized continuity equations,” Technical Report NRL Memorandum Report No. 93-7192, Naval Research Laboratory, 1993.
33.
33. S. K. Tiwari, V. S. Dharodi, A. Das, B. G. Patel, and P. Kaw, “ Evolution of sheared flow structure in visco-elastic fluids,” AIP Conf. Proc. 1582(1 ), 55 (2014).
http://dx.doi.org/10.1063/1.4865345
34.
34. P. Meunier, U. Ehrenstein, T. Leweke, and M. Rossi, “ A merging criterion for two-dimensional co-rotating vortices,” Phys. Fluids 14(8 ), 2757 (2002).
http://dx.doi.org/10.1063/1.1489683
35.
35. P. Meunier, S. Le Dizs, and T. Leweke, “ Physics of vortex merging,” C. R. Phys. 6(45 ), 431450 (2005).
http://dx.doi.org/10.1016/j.crhy.2005.06.003
36.
36. Ch. Josserand and M. Rossi, “ The merging of two co-rotating vortices: A numerical study,” Eur. J. Mech., B 26(6 ), 779794 (2007).
http://dx.doi.org/10.1016/j.euromechflu.2007.02.005
37.
37. S. Plimpton, “ Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1 ), 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
38.
38. V. Nosenko and J. Goree, “ Shear flows and shear viscosity in a two-dimensional Yukawa system (dusty plasma),” Phys. Rev. Lett. 93, 155004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.155004
39.
39. G. Falkovich, K. Gawȩdzki, and M. Vergassola, “ Particles and fields in fluid turbulence,” Rev. Mod. Phys. 73, 913975 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.913
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4888882
Loading
/content/aip/journal/pop/21/7/10.1063/1.4888882
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/7/10.1063/1.4888882
2014-07-09
2014-08-01

Abstract

A generalized hydrodynamic model depicting the behaviour of visco-elastic fluids has often been invoked to explore the behaviour of a strongly coupled dusty plasma medium below their crystallization limit. The model has been successful in describing the collective normal modes of the strongly coupled dusty plasma medium observed experimentally. The paper focuses on the study of nonlinear dynamical characteristic features of this model. Specifically, the evolution of coherent vorticity patches is being investigated here within the framework of this model. A comparison with Newtonian fluids and molecular dynamics simulations treating the dust species interacting through the Yukawa potential has also been presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/7/1.4888882.html;jsessionid=4rw9721ftv3lw.x-aip-live-02?itemId=/content/aip/journal/pop/21/7/10.1063/1.4888882&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4888882
10.1063/1.4888882
SEARCH_EXPAND_ITEM