Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/7/10.1063/1.4890298
1.
1. M. K. Matzen, B. W. Atherton, M. E. Cuneo, G. L. Donovan, C. A. Hall, M. Herrmann, M. L. Kiefer, R. J. Leeper, G. T. Leifeste, F. W. Long et al., Acta Phys. Pol. A 115, 956 (2009).
2.
2. D. V. Rose, D. R. Welch, E. A. Madrid, C. L. Miller, R. E. Clark, W. A. Stygar, M. E. Savage, G. A. Rochau, J. E. Bailey, T. J. Nash et al., Phys. Rev. ST Accel. Beams 13, 010402 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.010402
3.
3. R. C. Kirkpatrick, I. R. Lindemuth, and M. S. Ward, Fusion Technol. 27, 201 (1995).
4.
4. R. C. Kirkpatrick, High Energy Density Phys. 6, 207 (2010).
http://dx.doi.org/10.1016/j.hedp.2010.01.017
5.
5. M. E. Cuneo, M. C. Herrmann, D. B. Sinars, S. A. Slutz, W. A. Stygar, R. A. Vesey, A. B. Sefkow, G. A. Rochau, G. A. Chandler, J. E. Bailey et al., IEEE Trans. Plasma Sci. 40, 3222 (2012).
http://dx.doi.org/10.1109/TPS.2012.2223488
6.
6. J. Lindl, Phys. Plasmas 2, 3933 (1995).
http://dx.doi.org/10.1063/1.871025
7.
7. S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion ( Clarendon, Oxford, 2004).
8.
8. M. J. Edwards, P. K. Patel, J. D. Lindl, L. J. Atherton, S. H. Glenzer, S. W. Haan, J. D. Kilkenny, O. L. Landen, E. I. Moses, A. Nikroo et al., Phys. Plasmas 20, 070501 (2013).
http://dx.doi.org/10.1063/1.4816115
9.
9. S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).
http://dx.doi.org/10.1063/1.3333505
10.
10. M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp, P. F. Schmit, C. A. Jennings et al., “ Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion,” Phys. Rev. Lett. (submitted).
11.
11. I. R. Lindemuth and M. M. Widner, Phys. Fluids 24, 746 (1981).
http://dx.doi.org/10.1063/1.863415
12.
12. M. A. Sweeney and A. V. Farnsworth, Jr., Nucl. Fusion 21, 41 (1981).
http://dx.doi.org/10.1088/0029-5515/21/1/004
13.
13. I. R. Lindemuth and R. C. Kirkpatrick, Nucl. Fusion 23, 263 (1983).
http://dx.doi.org/10.1088/0029-5515/23/3/001
14.
14. R. D. Jones and W. C. Mead, Nucl. Fusion 26, 127 (1986).
http://dx.doi.org/10.1088/0029-5515/26/2/001
15.
15. F. J. Wessel, F. S. Felber, N. C. Wild, H. U. Rahman, A. Fisher, and E. Ruden, Appl. Phys. Lett. 48, 1119 (1986).
http://dx.doi.org/10.1063/1.96616
16.
16. M. M. Basko, Phys. Plasmas 7, 4579 (2000).
http://dx.doi.org/10.1063/1.1312182
17.
17. A. J. Kemp, M. M. Basko, and J. Meyer-ter-Vehn, Nucl. Fusion 41, 235 (2001).
http://dx.doi.org/10.1088/0029-5515/41/2/311
18.
18. A. J. Kemp, M. M. Basko, and J. Meyer-ter-Vehn, Nucl. Fusion 43, 16 (2003).
http://dx.doi.org/10.1088/0029-5515/43/1/302
19.
19. J. M. Taccetti, T. P. Intrator, G. A. Wurden, S. Y. Zhang, R. Aragonez, P. N. Assmus, C. M. Bass, C. Carey, S. A. deVries, W. J. Fienup et al., Rev. Sci. Instrum. 74, 4314 (2003).
http://dx.doi.org/10.1063/1.1606534
20.
20. T. Intrator, S. Y. Zhang, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski et al., Phys. Plasmas 11, 2580 (2004).
http://dx.doi.org/10.1063/1.1689666
21.
21. J. H. Degnan, D. J. Amdahl, A. Brown, T. Cavazos, S. K. Coffey, M. T. Domonkos, M. H. Frese, S. D. Frese, D. G. Gale, T. C. Grabowski et al., IEEE Trans. Plasma Sci. 36, 80 (2008).
http://dx.doi.org/10.1109/TPS.2007.913814
22.
22. T. P. Intrator, G. A. Wurden, P. E. Sieck, W. J. Waganaar, L. Dorf, M. Kostora, R. J. Cortez, J. H. Degnan, E. L. Ruden, M. Domonkos et al., J. Fusion Energy 28, 165 (2009).
http://dx.doi.org/10.1007/s10894-008-9180-z
23.
23. O. V. Gotchev, J. P. Knauer, P. Y. Chang, N. W. Jang, M. J. Shoup III, D. D. Meyerhofer, and R. Betti, Rev. Sci. Instrum. 80, 043504 (2009).
http://dx.doi.org/10.1063/1.3115983
24.
24. P.-Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Sguin, and R. D. Petrasso, Phys. Rev. Lett. 107, 035006 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.035006
25.
25. M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Sguin, and R. D. Petrasso, Phys. Plasmas 19, 056306 (2012).
http://dx.doi.org/10.1063/1.3696032
26.
26. L. J. Perkins, B. G. Logan, G. B. Zimmerman, and C. J. Werner, Phys. Plasmas 20, 072708 (2013).
http://dx.doi.org/10.1063/1.4816813
27.
27. M. M. Basko, A. J. Kemp, and J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000).
http://dx.doi.org/10.1088/0029-5515/40/1/305
28.
28. E. G. Harris, Phys. Fluids 5, 1057 (1962).
http://dx.doi.org/10.1063/1.1724473
29.
29. R. D. McBride, S. A. Slutz, C. A. Jennings, D. B. Sinars, M. E. Cuneo, M. C. Herrmann, R. W. Lemke, M. R. Martin, R. A. Vesey, K. J. Peterson et al., Phys. Rev. Lett. 109, 135004 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.135004
30.
30. R. D. McBride, M. R. Martin, R. W. Lemke, J. B. Greenly, C. A. Jennings, D. C. Rovang, D. B. Sinars, M. E. Cuneo, M. C. Herrmann, S. A. Slutz et al., Phys. Plasmas 20, 056309 (2013).
http://dx.doi.org/10.1063/1.4803079
31.
31. T. J. Awe, R. D. McBride, C. A. Jennings, D. C. Lamppa, M. R. Martin, D. C. Rovang, S. A. Slutz, M. E. Cuneo, A. C. Owen, D. B. Sinars et al., Phys. Rev. Lett. 111, 235005 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.235005
32.
32. R. D. McBride, private communication (2013).
33.
33. P. K. Rambo, I. C. Smith, J. L. Porter, M. J. Hurst, C. S. Speas, R. G. Adams, A. J. Garcia, E. Dawson, B. D. Thurston, C. Wakefield et al., Appl. Opt. 44, 2421 (2005).
http://dx.doi.org/10.1364/AO.44.002421
34.
34. M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001).
http://dx.doi.org/10.1063/1.1356740
35.
35. R. D. McBride, C. A. Jennings, R. A. Vesey, G. A. Rochau, M. E. Savage, W. A. Stygar, M. E. Cuneo, D. B. Sinars, M. Jones, K. R. LeChien et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.120401
36.
36. C. L. Ruiz, G. W. Cooper, S. A. Slutz, J. E. Bailey, G. A. Chandler, T. J. Nash, T. A. Melhorn, R. J. Leeper, D. Fehl, A. J. Nelson, et al., Phys. Rev. Lett. 93, 015001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.015001
37.
37. O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Doppner, D. E. Hinkel, L. F. Berzak Hopkins et al., Nature 506, 343 (2014).
http://dx.doi.org/10.1038/nature13008
38.
38. T. E. Blue and D. B. Harris, Nucl. Sci. Eng. 77, 463 (1981).
39.
39. M. D. Cable and S. P. Hatchett, J. Appl. Phys. 62, 2233 (1987).
http://dx.doi.org/10.1063/1.339850
40.
40. T. W. Hussey, N. F. Roderick, and D. A. Kloc, J. Appl. Phys. 51, 1452 (1980).
http://dx.doi.org/10.1063/1.327792
41.
41. D. R. Welch, D. V. Rose, R. E. Clark, C. B. Mostrom, W. A. Stygar, and R. J. Leeper, Phys. Rev. Lett. 103, 255002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.255002
42.
42. D. R. Welch, D. V. Rose, C. Thoma, R. E. Clark, C. B. Mostrom, W. A. Stygar, and R. J. Leeper, Phys. Plasmas 17, 072702 (2010).
http://dx.doi.org/10.1063/1.3457932
43.
43. D. R. Welch, D. V. Rose, C. Thoma, T. Genoni, N. Bruner, R. E. Clark, W. Stygar, and R. Leeper, Bull. Am. Phys. Soc. 56, 200 (2011).
44.
44. C. Thoma, D. R. Welch, and S. C. Hsu, Phys. Plasmas 20, 082128 (2013).
http://dx.doi.org/10.1063/1.4819063
45.
45. G. B. Zimmerman and W. B. Kruer, Plasma Phys. Controlled Fusion 2, 51 (1975).
46.
46. M. Geissel and A. J. Harvey-Thompson, private communication (2014).
47.
47. N. B. Meezan, R. L. Berger, L. Divol, D. H. Froula, D. E. Hinkel, O. S. Jones, R. A. London, J. D. Moody, M. M. Marinak, C. Niemann et al., Phys. Plasmas 14, 056304 (2007).
http://dx.doi.org/10.1063/1.2710782
48.
48. S. H. Glenzer, D. H. Froula, L. Divol, M. Dorr, R. L. Berger, S. Dixit, B. A. Hammel, C. Haynam, J. A. Hittinger, J. P. Holder et al., Nat. Phys. 3, 716 (2007).
http://dx.doi.org/10.1038/nphys709
49.
49. S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.025003
50.
50. K. J. Peterson, T. J. Awe, E. P. Yu, D. B. Sinars, E. S. Field, M. E. Cuneo, M. C. Herrmann, M. Savage, D. Schroen, K. Tomlinson, and C. W. Nakhleh, Phys. Rev. Lett. 112, 135002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.135002
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4890298
Loading
/content/aip/journal/pop/21/7/10.1063/1.4890298
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/7/10.1063/1.4890298
2014-07-24
2016-05-29

Abstract

The magnetized liner inertial fusion concept has been presented as a path toward obtaining substantial thermonuclear fusion yields using the Z accelerator [S. A. Slutz ., Phys. Plasmas, 056303 (2010)]. We present the first integrated magnetohydrodynamic simulations of the inertial fusion targets, which self-consistently include laser preheating of the fuel, the presence of electrodes, and end loss effects. These numerical simulations provided the design for the first thermonuclear fusion neutron-producing experiments on Z using capabilities that presently exist: peak currents of I = 18–20 MA, pre-seeded axial magnetic fields of , laser preheat energies of about  = 2 kJ delivered in 2 ns, fuel, and an aspect ratio 6 solid liner imploded to 70 km/s. Specific design details and observables for both near-term and future experiments are discussed, including sensitivity to laser timing and absorbed preheat energy. The initial experiments measured stagnation radii , temperatures around 3 keV, and isotropic neutron yields up to , with inferred alpha-particle magnetization parameters around [M. R. Gomez ., Phys. Rev. Lett. (submitted)].

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/7/1.4890298.html;jsessionid=LgnDmYwy72DHH0TtgfHOFNwO.x-aip-live-06?itemId=/content/aip/journal/pop/21/7/10.1063/1.4890298&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/7/10.1063/1.4890298&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/7/10.1063/1.4890298'
Right1,Right2,Right3,