1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/7/10.1063/1.4890571
1.
1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics ( Institute of Physics Publishing, Bristol, 2002).
2.
2. G. K. Geortz, Rev. Geophys. 27, 271, doi:10.1029/RG027i002p00271 (1989).
http://dx.doi.org/10.1029/RG027i002p00271
3.
3. R. L. Merlino, A. Barkan, C. Thompson, and N. D'Angelo, Phys. Plasmas 5, 1607 (1998).
http://dx.doi.org/10.1063/1.872828
4.
4. R. S. Narcisi, A. D. Bailey, L. D. Lucca, C. Sherman, and D. M. Thomas, J. Atmos. Terr. Phys. 33, 1147 (1971).
http://dx.doi.org/10.1016/0021-9169(71)90102-4
5.
5. M. Rapp, J. Hedin, I. Strelnikova, M. Friedrich, J. Gumbel, and F.-J. Lübken, Geophys. Res. Lett. 32, L23821, doi:10.1029/2005GL024676 (2005).
http://dx.doi.org/10.1029/2005GL024676
6.
6. S. J. Choi and M. J. Kushner, J. Appl. Phys. 74, 853 (1993).
http://dx.doi.org/10.1063/1.354877
7.
7. E. Yabe and K. Takahashi, Appl. Phys. Lett. 65, 694 (1994).
http://dx.doi.org/10.1063/1.112271
8.
8. S. H. Kim and R. L. Merlino, Phys. Plasmas 13, 052118 (2006).
http://dx.doi.org/10.1063/1.2204830
9.
9. S. H. Kim, R. L. Merlino, J. K. Meyer, and M. Rosenberg, J. Plasma Phys. 79, 1107 (2013).
http://dx.doi.org/10.1017/S0022377813001074
10.
10. M. Rosenberg and R. L. Merlino, Planet. Space Sci. 55, 1464 (2007).
http://dx.doi.org/10.1016/j.pss.2007.04.012
11.
11. A. P. Misra, N. C. Adhikary, and P. K. Shukla, Phys. Rev. E 86, 056406 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.056406
12.
12. A. P. Misra and N. C. Adhikary, Phys. Plasmas 20, 102309 (2013).
http://dx.doi.org/10.1063/1.4825353
13.
13. H. U. Rehman, Chin. Phys. Lett. 29, 65201 (2012).
http://dx.doi.org/10.1088/0256-307X/29/6/065201
14.
14. S. Ghosh, N. Chakrabarti, M. Khan, and M. R. Gupta, PRAMANA 80, 283 (2013).
http://dx.doi.org/10.1007/s12043-012-0475-2
15.
15. W. Oohara, D. Date, and R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.175003
16.
16. H. Saleem, Phys. Plasmas 14, 014505 (2007).
http://dx.doi.org/10.1063/1.2436757
17.
17. G. C. Reid, J. Geophys. Res. 95, 13891, doi:10.1029/JD095iD09p13891 (1990).
http://dx.doi.org/10.1029/JD095iD09p13891
18.
18. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet Space Sci. 38, 543 (1990).
http://dx.doi.org/10.1016/0032-0633(90)90147-I
19.
19. L. Landau, J. Phys. (USSR) 10, 25 (1946).
20.
20. E. Ott and R. N. Sudan, Phys. Fluids 12, 2388 (1969).
http://dx.doi.org/10.1063/1.1692358
21.
21. E. Ott and R. N. Sudan, Phys. Fluids 13, 1432 (1970).
http://dx.doi.org/10.1063/1.1693097
22.
22. A. Bandyopadhyay and K. P. Das, Phys. Plasmas 9, 465 (2002).
http://dx.doi.org/10.1063/1.1427022
23.
23. A. Bandyopadhyay and K. P. Das, Phys. Plasmas 9, 3333 (2002).
http://dx.doi.org/10.1063/1.1490132
24.
24. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 331, 163 (2011).
http://dx.doi.org/10.1007/s10509-010-0443-6
25.
25. T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969).
http://dx.doi.org/10.1063/1.1664975
26.
26. H. K. Andersen, N. D'Angelo, P. Michelsen, and P. Nielsen, Phys. Rev. Lett. 19, 149 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.149
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4890571
Loading
/content/aip/journal/pop/21/7/10.1063/1.4890571
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/7/10.1063/1.4890571
2014-07-17
2014-10-24

Abstract

The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg-de Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids , 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio () as well as the ratios of positive to negative ion temperatures () and masses ().

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/7/1.4890571.html;jsessionid=ati4h651ofpc2.x-aip-live-06?itemId=/content/aip/journal/pop/21/7/10.1063/1.4890571&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/7/10.1063/1.4890571
10.1063/1.4890571
SEARCH_EXPAND_ITEM