1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/21/8/10.1063/1.4891668
1.
1. J.-E. Wahlund et al., Geophys. Res. Lett. 21, 1835, doi:10.1029/94GL01290 (1994).
http://dx.doi.org/10.1029/94GL01290
2.
2. D.-J. Wu, D.-Y. Wang, and C. G. Fälthammar, Phys. Plasmas 2, 4476 (1995).
http://dx.doi.org/10.1063/1.871005
3.
3. E. V. Mishin and M. Förster, Geophys. Res. Lett. 22, 1745, doi:10.1029/95GL01442 (1995).
http://dx.doi.org/10.1029/95GL01442
4.
4. T. Chang, S. W. Y. Tam, and C. Wu, Phys. Plasmas 11, 1287 (2004).
http://dx.doi.org/10.1063/1.1667496
5.
5. O. G. Onishchenko, V. G. Krasnoselskikh, and O. A. Pokhotelov, Phys. Plasmas 15, 022903 (2008).
http://dx.doi.org/10.1063/1.2844744
6.
6. I. V. Golovchanskaya, B. V. Kozelov, O. V. Mingalev, Y. V. Fedorenko, and M. N. Melnik, Geophys. Res. Lett. 38, L17103, doi:10.1029/2011GL049003 (2011).
http://dx.doi.org/10.1029/2011GL049003
7.
7. J. Bonnell, P. Kintner, J.-E. Wahlund, K. Lynch, and R. Arnoldy, Geophys. Res. Lett. 23, 3297, doi:10.1029/96GL03238 (1996).
http://dx.doi.org/10.1029/96GL03238
8.
8. W. E. Drummond and M. N. Rosenbluth, Phys. Fluids 5, 1507 (1962).
http://dx.doi.org/10.1063/1.1706559
9.
9. J. M. Kindel and C. F. Kennel, J. Geophys. Res. 76, 3055, doi:10.1029/JA076i013p03055 (1971).
http://dx.doi.org/10.1029/JA076i013p03055
10.
10. O. A. Pokhotelov, O. G. Onishchenko, R. Z. Sagdeev, and R. A. Treumann, J. Geophys. Res. 108, 1291, doi:10.1029/2003JA009888 (2003).
http://dx.doi.org/10.1029/2003JA009888
11.
11. G. Ganguli, Y. C. Lee, and P. Palmadesso, Phys. Fluids 28, 761 (1985).
http://dx.doi.org/10.1063/1.865096
12.
12. G. Ganguli, P. Palmadesso, and Y. C. Lee, Geophys. Res. Lett. 12, 643, doi:10.1029/GL012i010p00643 (1985).
http://dx.doi.org/10.1029/GL012i010p00643
13.
13. G. Ganguli and P. Palmadesso, Geophys. Res. Lett. 15, 103, doi:10.1029/GL015i001p00103 (1988).
http://dx.doi.org/10.1029/GL015i001p00103
14.
14. V. Gavrishchaka, M. E. Koepke, and G. Ganguli, Phys. Plasmas 3, 3091 (1996).
http://dx.doi.org/10.1063/1.871656
15.
15. W. E. Amatucci, M. E. Koepke, J. J. Carroll, and T. E. Sheridan, Geophys. Res. Lett. 21, 1595, doi:10.1029/94GL00881 (1994).
http://dx.doi.org/10.1029/94GL00881
16.
16. M. E. Koepke, W. E. Amatucci, J. J. Carroll, and T. E. Sheridan, Phys. Rev. Lett. 72, 3355 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3355
17.
17. W. E. Amatucci, D. N. Walker, G. Ganguli, J. A. Antoniades, D. Duncan, J. H. Bowles, V. Gavrishchaka, and M. E. Koepke, Phys. Rev. Lett. 77, 19781981 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1978
18.
18. M. A. Reynolds and G. Ganguli, Phys. Plasmas 5, 2504 (1998).
http://dx.doi.org/10.1063/1.872934
19.
19. I. V. Golovchanskaya, B. V. Kozelov, I. V. Mingalev, M. N. Melnik, and A. A. Lubchich, Ann. Geophys. 32, 1 (2014).
http://dx.doi.org/10.5194/angeo-32-1-2014
20.
20. V. Gavrishchaka, S. Ganguli, and G. Ganguli, Phys. Rev. Lett. 80, 728 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.728
21.
21. P. M. Kintner, J. Franz, P. Schuck, and E. Klatt, J. Geophys. Res. 105, 21237, doi:10.1029/1999JA000323 (2000).
http://dx.doi.org/10.1029/1999JA000323
22.
22. G. Ganguli, Y. C. Lee, P. J. Palmadesso, and S. L. Ossakow, in Physics of Space Plasmas (1988), edited by T. Chang, G. B. Crew, and R. Jasperse ( Scientific Publishers, Cambridge, MA, 1989).
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/8/10.1063/1.4891668
Loading
/content/aip/journal/pop/21/8/10.1063/1.4891668
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/8/10.1063/1.4891668
2014-08-08
2015-04-26

Abstract

The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼102–103 m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominating branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/8/1.4891668.html;jsessionid=5004h3rhcps2f.x-aip-live-06?itemId=/content/aip/journal/pop/21/8/10.1063/1.4891668&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/8/10.1063/1.4891668
10.1063/1.4891668
SEARCH_EXPAND_ITEM