Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/21/8/10.1063/1.4892405
1.
1. S. Cowley, R. Kulsrud, and R. Sudan, “ Considerations of ion-temperature-gradient-driven turbulence,” Phys. Fluids B 3, 2767 (1991).
http://dx.doi.org/10.1063/1.859913
2.
2. G. Hammett, M. Beer, W. Dorland, S. Cowley, and S. Smith, “ Developments in the gyrofluid approach to tokamak turbulence simulations,” Plasma Phys. Controlled Fusion 35(8), 973 (1993).
http://dx.doi.org/10.1088/0741-3335/35/8/006
3.
3. M. Beer, S. Cowley, and G. Hammett, “ Field-aligned coordinates for nonlinear simulations of tokamak turbulence,” Phys. Plasmas 2, 2687 (1995).
http://dx.doi.org/10.1063/1.871232
4.
4. A. M. Dimits, “ Fluid simulations of tokamak turbulence in quasiballooning coordinates,” Phys. Rev. E 48, 40704079 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.4070
5.
5. B. Scott, “ Global consistency for thin flux tube treatments of toroidal geometry,” Phys. Plasmas 5, 2334 (1998).
http://dx.doi.org/10.1063/1.872907
6.
6. B. Scott, “ Shifted metric procedure for flux tube treatments of toroidal geometry: Avoiding grid deformation,” Phys. Plasmas 8, 447 (2001).
http://dx.doi.org/10.1063/1.1335832
7.
7. M. Ottaviani, “ An alternative approach to field-aligned coordinates for plasma turbulence simulations,” Phys. Lett. A 375(15), 16771685 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.02.069
8.
8. F. Hariri and M. Ottaviani, “ A flux-coordinate independent field-aligned approach to plasma turbulence simulations,” Comput. Phys. Commun. 184(11), 24192429 (2013).
http://dx.doi.org/10.1016/j.cpc.2013.06.005
9.
9. F. Hariri, “ FENICIA: A generic plasma simulation code using a flux-independent field-aligned coordinate approach,” Ph.D. thesis ( Aix-Marseille University, AMU, 2013).
10.
10. D. Biskamp, Nonlinear Magnetohydrodynamics ( Cambridge University Press, 1997), Vol. 1.
11.
11. H. Furth, P. Rutherford, and H. Selberg, “ Tearing mode in the cylindrical tokamak,” Phys. Fluids 16(7), 10541063 (1973).
http://dx.doi.org/10.1063/1.1694467
12.
12. S. C. Cowley and R. Hastie, “ Electron diamagnetism and toroidal coupling of tearing modes,” Phys. Fluids 31(3), 426 (1988).
http://dx.doi.org/10.1063/1.867019
13.
13. S. C. Cowley, “ Some aspects of anomalous transport in tokamaks: Stochastic magnetic fields, tearing modes and nonlinear ballooning instabilities,” Ph.D. thesis ( Princeton University, NJ, 1985).
14.
14. J. Connor, S. C. Cowley, and R. Hastie, “ Micro-tearing stability in tokamaks,” Plasma Phys. Controlled Fusion 32(10), 799 (1990).
http://dx.doi.org/10.1088/0741-3335/32/10/004
15.
15. P. H. Rutherford, “ Nonlinear growth of the tearing mode,” Phys. Fluids 16(11), 1903 (1973).
http://dx.doi.org/10.1063/1.1694232
16.
16. F. L. Waelbroeck, “ Nonlinear growth of strongly unstable tearing modes,” J. Plasma Phy. 50, 477494 (1993).
http://dx.doi.org/10.1017/S0022377800017281
17.
17. A. Ishizawa and F. L. Waelbroeck, “ Magnetic island evolution in the presence of ion-temperature gradient-driven turbulence,” Phys. Plasmas 20(12), 122301 (2013).
http://dx.doi.org/10.1063/1.4838176
18.
18. W. Hornsby, A. Peeters, M. Siccinio, and E. Poli, “ On the dynamics of vortex modes within magnetic islands,” Phys. Plasmas 19, 032308 (2012).
http://dx.doi.org/10.1063/1.3692094
19.
19. F. Militello, F. L. Waelbroeck, R. Fitzpatrick, and W. Horton, “ Interaction between turbulence and a nonlinear tearing mode in the low β regime,” Phys. Plasmas 15(5), 050701 (2008).
http://dx.doi.org/10.1063/1.2917915
http://aip.metastore.ingenta.com/content/aip/journal/pop/21/8/10.1063/1.4892405
Loading
/content/aip/journal/pop/21/8/10.1063/1.4892405
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/21/8/10.1063/1.4892405
2014-08-11
2016-09-30

Abstract

A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. , 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/21/8/1.4892405.html;jsessionid=wz-9uZ68FTwl21ln42zsPSmq.x-aip-live-02?itemId=/content/aip/journal/pop/21/8/10.1063/1.4892405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/21/8/10.1063/1.4892405&pageURL=http://scitation.aip.org/content/aip/journal/pop/21/8/10.1063/1.4892405'
Right1,Right2,Right3,