Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. Rossi and S. Olbert, Introduction to the Physics of Space ( McGraw-Hill, New York, 1970).
2. V. M. Vasyliunas, Rev. Geophys. Space Phys. 13, 303, doi:10.1029/RG013i001p00303 (1975).
3. A. MacMahon, Phys. Fluids 8(10), 1840 (1965).
4. M. Hesse, K. Schindler, J. Birn, and M. Kuznetsova, Phys. Plasmas 6, 1781 (1999);
4. P. Pritchett, J. Geophys. Res. 106, 3783 (2001);
4. M. Hesse, M. Kuznetsova, and J. Birn, Phys. Plasmas 11, 5387 (2004);
4. P. Ricci, J. U. Brackbill, W. Daughton, and G. Lapenta, Phys. Plasmas 11, 4102 (2004);
4. L. Yin, W. Daughton, H. Karimabadi, B. J. Albright, K. J. Bowers, and J. Margulies, Phys. Rev. Lett. 101, 125001 (2008).
5. T. G. Northop, Adiabatic Motion of Charged Particles ( Wiley, 1963).
6. J. Scudder and W. Daughton, J. Geophys. Res. 113, A06222 (2008).
7. J. Scudder, Magnetic Reconnection Concepts and Applications, edited by W. Gonzalez and E. N. Parker ( Springer-Verlag, 2016), Chap. 2.
8. E. Priest and T. Forbes, Magnetic Reconnection ( Cambridge Press, 2000);
8. D. Biskamp, Magnetic Reconnection in Plasmas ( Cambridge Press, 2000).
9. J. Birn and E. Priest, Reconnection of Magnetic Fields ( Cambridge, 2007);
9. K. Schindler, Physics of Space Plasma Activity ( Cambridge Press, 2000).
10. F. S. Mozer, S. D. Bale, and T.-D. Phan, Phys. Rev. Lett. 89, 015002 (2002);
10. F. S. Mozer, S. D. Bale, T.-D. Phan, and J. A. Osborne, Phys. Rev. Lett. 91, 245002 (2003);
10. A. Vaivads, A. Retino, and M. Andre, Space Sci. Rev. 122, 19 (2006);
10. A. Retino, D. Sundkvist, A. Vaivads, F. S. Mozer, M. Andre, and C. J. Owen, Nat. Phys. 3, 236 (2007);
10. S. Bale and F. S. Mozer, Phys. Rev. Lett. 98, 205001 (2007).
11. G. Paschmann, Geophys. Res. Lett. 35, L19109, doi:10.1029/2008GL035297 (2008).
12. G. Paschmann, M. Oieroset, and T. D. Phan, Space Sci. Rev. 178, 385417 (2013).
13. W. Daughton, J. Scudder, and H. Karimabadi, Phys. Plasmas 13, 072101 (2006).
14. R. D. Hazeltine and F. Waelbroeck, The Framework of Plasma Physics ( Perseus, Reading, MA, 1999).
15. F. S. Mozer, J. Geophys. Res. 110, A12222, doi:10.1029/2005JA011258 (2005).
16. J. D. Scudder, R. D. Holdaway, W. Daughton, H. Karimabadi, V. Roytershteyn, C. T. Russell, and J. Y. Lopez, Phys. Rev. Lett. 108, 225005 (2012).
17. J. Egedal, W. Daughton, and A. Le, Nat. Phys. 8, 321324 (2012).
18. S. L. Rodriguez, J. D. Scudder, F. S. Mozer, and C. T. Russell, Fall AGU Meeting Abstract SM31A-1701 (2008).
19. J. Y. Lopez, Ph.D. thesis, University of Iowa, 2015.
20. N. Aunai, M. Hesse, and M. Kuznetsova, Phys. Plasmas 20, 092903 (2013).
21. Y.-H. Liu, W. Daughton, H. Karimabadi, H. Li, and S. P. Gary, Phys. Plasmas 21, 022113 (2014).
22. J. D. Scudder, F. Hunsaker, G. Miller, J. Lobell, T. Zawistowski, J. Keller, D. Chornay, F. Herrero, R. Fitzenreiter, D. Fairfield, J. Needell, D. Bodet, J. Googins, C. Kletzing, R. Torbert, J. Vandiver, R. Bentley, W. Fillius, C. McIlwain, E. Whipple, and A. Korth, Space Sci. Rev. 71, 459495 (1995).
23.South West Research Institute, San Antonio, Burst Algorithm Definition and Concept Operation (BADCO) for the Magnetospheric MultiScale (MMS) Mission, May 2011, Document No 10160.17-BADCO-01, for contract NNG04EB99c.
24. C. Walén, Ark. Mat., Astron. Fys. 30A, 187 (1944).

Data & Media loading...


Article metrics loading...



We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable “frozen flux” slippage to occur. This condition differs from the violation of the “frozen-in” condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the guiding center approximation expansion parameters for electrons which we show are and determined by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions possible with the (unmeasurable) flux function. A new potentially observable frozen flux rate, Λ, differentiates significant from anecdotal frozen flux slippage. A , ϒ, is shown with PIC simulations to be essentially proportional to the local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid “ion-diffusion” region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred separatrices, demonstrating that Λ ≠ 0 violations are present over significant distances (in ion inertial units) from the separator identified by the 2D flux function; these violations are, however, generally weaker than seen at known separators in 2D simulations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd