Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Yamada, R. M. Kulsrud, and H. Ji, Rev. Mod. Phys. 82, 603 (2010).
2. Y. Ono, H. Tanabe, Y. Hayashi, T. Ii, Y. Narushima, T. Yamada, M. Inomoto, and C. Z. Cheng, Phys. Rev. Lett. 107, 185001 (2011).
3. Y. Ren, M. Yamada, H. Ji, S. P. Gerhardt, and R. M. Kulsrud, Phys. Rev. Lett. 101, 085003 (2008).
4. J. Yoo, M. Yamada, H. Ji, and C. E. Myers, Phys. Rev. Lett. 110, 215007 (2013).
5. M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, and C. E. Myers, Nat. Commun. 5, 4774 (2014).
6. J. R. Wygant, C. A. Cattell, R. Lysak, Y. Song, J. Dombeck, J. McFadden, F. S. Mozer, C. W. Carlson, G. Parks, E. A. Lucek et al., J. Geophys. Res. 110, A09206, doi:10.1029/2004JA010708 (2005).
7. T. D. Phan, J. F. Drake, M. A. Shay, F. S. Mozer, and J. P. Eastwood, Phys. Rev. Lett. 99, 255002 (2007).
8. L.-J. Chen, N. Bessho, B. Lefebvre, H. Vaith, A. Asnes, O. Santolik, A. Fazakerley, P. Puhl-Quinn, A. Bhattacharjee, Y. Khotyaintsev et al., Phys. Plasmas 16, 056501 (2009).
9. T. Nagai, I. Shinohara, S. Zenitani, R. Nakamura, M. Fujimoto, Y. Saito, and T. Mukai, J. Geophys. Res. 118, 1167, doi:10.1002/jgra.50247 (2013).
10. M. Oieroset, R. Lin, T. Phan, D. E. Larson, and S. D. Bale, Phys. Rev. Lett. 89, 195001 (2002).
11. Y. Asano, R. Nakamura, I. Shinohara, M. Fujimoto, T. Takada, W. Baumjohann, C. J. Owen, A. N. Fazakerley, A. Runov, T. Nagai et al., J. Geophys. Res. 113, A01207, doi:10.1029/2007JA012461 (2008).
12. J. Egedal, A. , N. Katz, L.-J. Chen, B. Lefebvre, W. Daughton, and A. Fazakerley, J. Geophys. Res. 115, A03214, doi:10.1029/2009JA014650 (2010).
13. A. Runov, V. Angelopoulos, M. I. Sitnov, V. A. Sergeev, J. Bonnell, J. P. McFadden, D. Larson, K.-H. Glassmeier, and U. Auster, Geophys. Res. Lett. 36, L14106, doi:10.1029/2009GL038980 (2009).
14. C. Z. Cheng, Y. Ren, G. S. Choe, and Y. J. Moon, Astrophys. J. 596, 1341 (2003).
15. D. Biskamp, Magnetic Reconnection in Plasmas ( Cambridge University Press, Cambridge, 2000).
16. J. Birn and E. R. Priest, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations ( Cambridge University Press, Cambridge, England, 2007).
17. R. Horiuchi and H. Ohtani, Commun. Comput. Phys. 4, 496 (2008).
18. M. Hoshino, J. Geophys. Res. 110, A10215, doi:10.1029/2005JA011229 (2005).
19. W. Daughton, J. Scudder, and H. Karimabadi, Phys. Plasmas 13, 072101 (2006).
20. J. Egedal, W. Daughton, and A. Le, Nature Phys. 8, 321 (2012).
21. J. Ng, J. Egedal, A. Le, and W. Daughton, Phys. Plasmas 19, 112108 (2012).
22. S. Zenitani, M. Hesse, A. Klimas, and M. Kuznetsova, Phys. Rev. Lett. 106, 195003 (2011).
23. R. Horiuchi and T. Sato, Phys. Plasmas 1, 3587 (1994).
24. A. Ishizawa, R. Horiuchi, and H. Ohtani, J. Plasma Fusion Res. Ser. 6, 287 (2004).
25. A. Ishizawa and R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
26. J. F. Drake, M. Swisdak, T. D. Phan, P. A. Cassak, M. A. Shay, S. T. Lepri, R. P. Lin, E. Quataert, and T. H. Zurbuchen, J. Geophys. Res. 114, A05111, doi:10.1029/2008JA013701 (2009).
27. M. Ohtani and R. Horiuchi, Plasma Fusion Res. 4, 024 (2009).
28. N. Aunai, G. Belmont, and R. Smets, J. Geophys. Res. 116, A09232, doi:10.1029/2011JA016688 (2011).
29. P. Sweet, Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert ( Cambridge University Press, New York, 1958), p. 123.
30. E. Parker, Astrophys. J. Suppl. Ser. 8, 177 (1963).
31. H. Petschek, in Proceedings of the AAS-NASA Symposium on the Physics of Solar Flares (NASA Special Publications, 50 NASA, Washington, D.C., 1964), p. 425.
32. A. A. Galeev, Basic Plasma Physics II ( North-Holland, New York, 1984), p. 305.
33. B. U. O. Sonnerup, “ Magnetic field reconnection,” in Solar System Plasma Physics, edited by L. J. Lanzerotti, C. Kennel, and E. Parker ( North-Holland, New York, 1979), p. 45.
34. D. A. Uzdensky and R. M. Kulsrud, Phys. Plasma 13, 062305 (2006).
35. M. S. Dolgonosov, G. Zimbardo, and A. Greco, J. Geophys. Res. 115, A02209, doi:10.1029/2009JA014398 (2010).

Data & Media loading...


Article metrics loading...



The key physical processes of the electron and ion dynamics, the structure of the electric and magnetic fields, and how particles gain energy in the driven magnetic reconnection in collisionless plasmas for the zero guide field case are presented. The key kinetic physics is the decoupling of electron and ion dynamics around the magnetic reconnection region, where the magnetic field is reversed and the electron and ion orbits are meandering, and around the separatrix region, where electrons move mainly along the field line and ions move mainly across the field line. The decoupling of the electron and ion dynamics causes charge separation to produce a pair of in-plane bipolar converging electrostatic electric field ( ) pointing toward the neutral sheet in the magnetic field reversal region and the monopolar around the separatrix region. A pair of electron jets emanating from the reconnection current layer generate the quadrupole out-of-plane magnetic field, which causes the parallel electric field ( ) from to accelerate particles along the magnetic field. We explain the electron and ion dynamics and their velocity distributions and flow structures during the time-dependent driven reconnection as they move from the upstream to the downstream. In particular, we address the following key physics issues: (1) the decoupling of electron and ion dynamics due to meandering orbits around the field reversal region and the generation of a pair of converging bipolar electrostatic electric field ( ) around the reconnection region; (2) the slowdown of electron and ion inflow velocities due to acceleration/deceleration of electrons and ions by as they move across the neutral sheet; (3) how the reconnection current layer is enhanced and how the orbit meandering particles are accelerated inside the reconnection region by ; (4) why the electron outflow velocity from the reconnection region reaches super-Alfvenic speed and the ion outflow velocity reaches Alfvenic speed; (5) how the quadrupole magnetic field is produced and how is produced; (6) how electrons and ions are accelerated by around the separatrix region; (7) why electrons have a flat-top parallel velocity distribution in the upstream just outside the reconnection region as observed in the magnetotail; (8) how electron and ion dynamics decouple and how the monopolar electrostatic electric field is produced around the separatrix region; (9) how ions gain energy as they move across the separatrix region into the downstream and how the ion velocity distribution is thermalized in the far downstream; and (10) how electrons move across the separatrix region and in the downstream and how the electron velocity distribution is thermalized in the far downstream. Finally, the main energy source for driving magnetic reconnection and particle acceleration/heating is the inductive electric field, which accelerates both electrons and ions around the reconnection current layer and separatrix regions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd