Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive ( Springer, New York, 1998).
2. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion ( Oxford University Press, Oxford, 2004).
3. J. H. Nuckolls, L. Wood, A. Thiessen, and G. B. Zimmermann, Nature 239, 139 (1972).
4. J. Lindl, Phys. Plasmas 2, 3933 (1995).
5. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).
6. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
7. H. Shiraga, H. Nagatomo, W. Theobald, A. A. Solodov, and M. Tabak, Nucl. Fusion 54, 054005 (2014).
8. H. Azechi, K. Mima, S. Shiraga, S. Fujioka, H. Nagatomo, Y. Johzaki, T. Jitsuno, M. Key, R. Kodama, M. Koga, K. Kondo, J. Kawanaka, N. Miyanaga, M. Murakami, K. Nagai, M. Nakai, H. Nakamura, T. Nakamura, T. Nakazato, Y. Nakao, K. Nishihara, H. Nishimura, T. Norimatsu, P. Norreys, T. Ozaki, J. Pasley, H. Sakagami, Y. Sakawa, N. Sarukura, K. Shigemori, T. Shimizu, A. Sunahara, T. Taguchi, K. Tanaka, K. Tsubakimoto, Y. Fujimoto, H. Homma, and A. Iwamoto, Nucl. Fusion 53, 104021 (2013).
9. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, Phys. Rev. Lett. 86, 436 (2001).
10. M. Temporal, J. J. Honrubia, and S. Atzeni, Phys. Plasmas 9, 3098 (2002).
11. C. Fernández, J. J. Honrubia, B. J. Albright, K. A. Flippo, D. C. Gautier, B. M. Hegelich, M. J. Schmitt, M. Temporal, and L. Yin, Nucl. Fusion 49, 065004 (2009).
12. V. T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J. L. Feugeas, Ph. Nicolai, and X. Ribeyre, Nucl. Fusion 50, 045003 (2010).
13. J. J. Honrubia, J. C. Fernández, B. M. Hegelich, M. Murakami, and C. D. Enriquez, Laser Part. Beams 32, 419 (2014).
14. B. Canaud and M. Temporal, New J. Phys. 12, 043037 (2010).
15. X. Ribeyre, G. Schurtz, M. Lafon, S. Galera, and S. Weber, Plasma Phys. Controlled Fusion 51, 015013 (2009).
16. B. Canaud, S. Laffite, V. Brandon, and M. Temporal, Laser Part. Beams 30, 183 (2012).
17. B. Canaud, F. Garaude, C. Clique, N. Lecler, A. Masson, R. Quach, and J. Van der Vliet, Nucl. Fusion 47, 1652 (2007).
18. J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, Phys. Plasmas 21, 020501 (2014).
19. C. Lion, J. Phys.: Conf. Ser. 244, 012003 (2010).
20. X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007).
21. N. Hopps, K. Oades, J. Andrew, C. Brown, G. Cooper, C. Danson, S. Daykin, S. Duffield, R. Edwards, D. Egan, S. Elsmere, S. Gales, M. Girling, E. Gumbrell, E. Harvey, D. Hillier, D. Hoarty, C. Horsfield, S. James, A. Leatherland, S. Masoero, A. Meadowcroft, M. Norman, S. Parker, S. Rothman, M. Rubery, P. Treadwell, D. Winter, and T. Bett, Plasma Phys. Controlled Fusion 57, 064002 (2015).
22. D. D. Meyerhofer, R. L. McCrory, R. Betti, T. R. Boehly, D. T. Casey, T. J. B. Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, R. Epstein, K. A. Fletcher, J. A. Frenje, Y. Yu. Glebov, V. N. Goncharov, D. R. Harding, S. H. Hu, I. V. Igumenshchev, J. P. Knauer, C. K. Li, J. A. Marozas, F. J. Marshall, P. W. McKenty, P. M. Nilson, S. P. Padalino, R. D. Petrasso, P. B. Radha, S. P. Regan, T. C. Sangster, F. H. Séguin, W. Seka, R. W. Short, D. Shvarts, S. Skupsky, J. M. Soures, C. Stoeckl, W. Theobald, and B. Yaakobi, Nucl. Fusion 51, 053010 (2011).
23. K. Mima, K. A. Tanaka, R. Kodama, T. Johzaki, H. Nagatomo, H. Shiraga, N. Miyanaga, M. Murakami, H. Azechi, M. Nakai, T. Norimatu, K. Nagai, T. Taguchi, and H. Sakagami, Eur. Phys. J. D 44, 259 (2007).
24. S. Skupsky and K. Lee, J. Appl. Phys. 54, 3662 (1983).
25. M. Temporal, B. Canaud, W. J. Garbett, and R. Ramis, High Power Laser Sci. Eng. 2, e37 (2014).
26. A. J. Schmitt, Appl. Phys. Lett. 44, 399 (1984).
27. M. Temporal, B. Canaud, W. J. Garbett, F. Philippe, and R. Ramis, Eur. Phys. J. D 69, 12 (2015).
28. S. Skupsky, J. A. Marozas, R. S. Craxton, R. Betti, T. J. B. Collins, J. A. Delettrez, V. N. Goncharov, P. W. McKenty, P. B. Radha, J. P. Knauer, F. J. Marshall, D. R. Harding, J. D. Kilkenny, D. D. Meyerhofer, T. C. Sangster, and R. L. McCrory, Plasma Phys. 11, 2763 (2004).
29. S. Atzeni, Plasma Phys. Controlled Fusion 29, 1535 (1987).
30. T. B. Kaiser, Phys. Rev. E 61, 895 (2000).
31. M. Temporal, S. Jacquemot, L. Bonnet, and A. Decoster, Phys. Plasmas 8, 1363 (2001).
32. B. Canaud, X. Fortin, F. Garaude, C. Meyer, and F. Philippe, Laser Part. Beams 22, 109 (2004).
33. B. Canaud, X. Fortin, F. Garaude, C. Meyer, F. Philippe, M. Temporal, S. Atzeni, and A. Schiavi, Nucl. Fusion 44, 1118 (2004).

Data & Media loading...


Article metrics loading...



The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd