Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/10/10.1063/1.4934929
1.
1. E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications ( Cambridge University Press, Cambridge, 2000).
2.
2.Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations, edited by J. Birn and E. R. Priest ( Cambridge University Press, Cambridge, 2007).
3.
3. E. G. Zweibel and M. Yamada, “ Magnetic reconnection in astrophysical and laboratory plasmas,” Annu. Rev. Astron. Astrophys. 47, 291 (2009).
http://dx.doi.org/10.1146/annurev-astro-082708-101726
4.
4. M. Yamada, R. Kulsrud, and H. Ji, “ Magnetic reconnection,” Rev. Mod. Phys. 82, 603 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.603
5.
5. S. W. H. Cowley, “ A qualitative study of the reconnection between the Earth's magnetic field and an interplanetary field of arbitrary orientation,” Radio Sci. 8, 903, doi:10.1029/RS008i011p00903 (1973).
http://dx.doi.org/10.1029/RS008i011p00903
6.
6. S. Fukao, M. Ugai, and T. Tsuda, “ Topological study of magnetic field near a neutral point,” RISRJ 29, 133 (1975).
7.
7. J. M. Greene, “ Geometrical properties of three-dimensional reconnecting magnetic fields with nulls,” J. Geophys. Res. 93, 8583, doi:10.1029/JA093iA08p08583 (1988).
http://dx.doi.org/10.1029/JA093iA08p08583
8.
8. Y.-T. Lau and J. M. Finn, “ Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines,” Astrophys. J. 350, 672 (1990).
http://dx.doi.org/10.1086/168419
9.
9. C. E. Parnell, J. M. Smith, T. Neukirch, and E. R. Priest, “ The structure of three-dimensional magnetic neutral points,” Phys. Plasmas 3, 759 (1996).
http://dx.doi.org/10.1063/1.871810
10.
10. C. J. Xiao, X. G. Wang, Z. Y. Pu, H. Zhao, J. X. Wang, Z. W. Ma, S. Y. Fu, M. G. Kivelson, Z. X. Liu, Q. G. Zong, K. H. Glassmeier, A. Balogh, A. Korth, H. Reme, and C. P. Escoubet, “ In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail,” Nat. Phys. 2, 478 (2006).
http://dx.doi.org/10.1038/nphys342
11.
11. C. J. Xiao, X. G. Wang, Z. Y. Pu, Z. W. Ma, H. Zhao, G. P. Zhou, J. X. Wang, M. G. Kivelson, S. Y. Fu, Z. X. Liu, Q. G. Zong, M. W. Dunlop, K.-H. Glassmeier, E. Lucek, H. Reme, I. Dandouras, and C. P. Escoubet, “ Satellite observations of separator-line geometry of three-dimensional magnetic reconnection,” Nat. Phys. 3, 609 (2007).
http://dx.doi.org/10.1038/nphys650
12.
12. J.-S. He, C.-Y. Tu, H. Tian, C.-J. Xiao, X.-G. Wang, Z.-Y. Pu, Z.-W. Ma, M. W. Dunlop, H. Zhao, G.-P. Zhou, J.-X. Wang, S.-Y. Fu, Z.-X. Liu, Q.-G. Zong, K.-H. Glassmeier, H. Reme, I. Dandouras, and C. P. Escoubet, “ A magnetic null geometry reconstructed from Cluster spacecraft observations,” J. Geophys. Res. 113, A05205, doi:10.1029/2007JA012609 (2008).
http://dx.doi.org/10.1029/2007JA012609
13.
13. D. E. Wendel and M. L. Adrian, “ Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath,” J. Geophys. Res. 118, 1571, doi:10.1002/jgra.50234 (2013).
http://dx.doi.org/10.1002/jgra.50234
14.
14. R. Guo, Z. Pu, C. Xiao, X. Wang, S. Fu, L. Xie, Q. Zong, J. He, Z. Yao, J. Zhong, and J. Li, “ Separator reconnection with antiparallel/component features observed in magnetotail plasmas,” J. Geophys. Res. 118, 6116, doi:10.1002/jgra.50569 (2013).
http://dx.doi.org/10.1002/jgra.50569
15.
15. H. S. Fu, A. Vaivads, Y. V. Khotyaintsev, V. Olshevsky, M. André, J. B. Cao, S. Y. Huang, A. Retinò, and G. Lapenta, “ How to find magnetic nulls and reconstruct field topology with MMS data?,” J. Geophys. Res. 120, 3758, doi:10.1002/2015JA021082 (2015).
http://dx.doi.org/10.1002/2015JA021082
16.
16. V. Olshevsky, A. Divin, E. Eriksson, S. Markidis, and G. Lapenta, “ Energy dissipation in magnetic null points at kinetic scales,” Astrophys. J. 807, 155 (2015).
http://dx.doi.org/10.1088/0004-637X/807/2/155
17.
17. B. Filippov, “ Observation of a 3D magnetic null point in the solar corona,” Sol. Phys. 185, 297 (1999).
http://dx.doi.org/10.1023/A:1005124915577
18.
18. G. Aulanier, E. E. DeLuca, S. K. Antiochos, R. A. McMullen, and L. Golub, “ The topology and evolution of the Bastille day flare,” Astrophys. J. 540, 1126 (2000).
http://dx.doi.org/10.1086/309376
19.
19. H. Zhao, J.-X. Wang, J. Zhang, C.-J. Xiao, and H.-M. Wang, “ Determination of the topology skeleton of magnetic fields in a solar active region,” Chin. J. Astron. Astrophys. 8, 133 (2008).
http://dx.doi.org/10.1088/1009-9271/8/2/01
20.
20. D. W. Longcope and C. E. Parnell, “ The number of magnetic null points in the quiet sun corona,” Sol. Phys. 254, 51 (2009).
http://dx.doi.org/10.1007/s11207-008-9281-x
21.
21. M. S. Freed, D. W. Longcope, and D. E. McKenzie, “ Three-year global survey of coronal null points from potential-field-source-surface (PFSS) modeling and solar dynamics observatory (SDO) observations,” Sol. Phys. 290, 467 (2015).
http://dx.doi.org/10.1007/s11207-014-0616-5
22.
22. S. J. Edwards and C. E. Parnell, “ Null point distribution in global coronal potential field extrapolations,” Sol. Phys. 290, 2055 (2015).
http://dx.doi.org/10.1007/s11207-015-0727-7
23.
23. S. Masson, E. Pariat, G. Aulanier, and C. J. Schrijver, “ The nature of flare ribbons in coronal null-point topology,” Astrophys. J. 700, 559 (2009).
http://dx.doi.org/10.1088/0004-637X/700/1/559
24.
24. P. Démoulin, J. C. Hénoux, and C. H. Mandrini, “ Are magnetic null points important in solar flares?,” Astron. Astrophys. 285, 1023 (1994).
25.
25. G. Barnes, “ On the relationship between coronal magnetic null points and solar eruptive events,” Astrophys. J. Lett. 670, L53 (2007).
http://dx.doi.org/10.1086/524107
26.
26. R. M. Close, C. E. Parnell, and E. R. Priest, “ Separators in 3D quiet-sun magnetic fields,” Sol. Phys. 225, 21 (2004).
http://dx.doi.org/10.1007/s11207-004-3259-0
27.
27. S. Régnier, C. E. Parnell, and A. L. Haynes, “ A new view of quiet-Sun topology from Hinode/SOT,” Astron. Astrophys. 484, L47 (2008).
http://dx.doi.org/10.1051/0004-6361:200809826
28.
28. S. Servidio, W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk, “ Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence,” Phys. Rev. Lett. 102, 115003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.115003
29.
29. S. Servidio, W. H. Matthaeus, M. A. Shay, P. Dmitruk, P. A. Cassak, and M. Wan, “ Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence,” Phys. Plasmas 17, 032315 (2010).
http://dx.doi.org/10.1063/1.3368798
30.
30. R. C. Maclean, C. E. Parnell, and K. Galsgaard, “ Is null-point reconnection important for solar flux emergence?,” Sol. Phys. 260, 299 (2009).
http://dx.doi.org/10.1007/s11207-009-9458-y
31.
31. C. E. Parnell, R. C. Maclean, and A. L. Haynes, “ The detection of numerous magnetic separators in a three-dimensional magnetohydrodynamic model of solar emerging flux,” Astrophys. J. 725, L214 (2010).
http://dx.doi.org/10.1088/2041-8205/725/2/L214
32.
32. E. R. Priest, G. Hornig, and D. I. Pontin, “ On the nature of three-dimensional magnetic reconnection,” J. Geophys. Res. 108, 1285, doi:10.1029/2002JA009812 (2003).
http://dx.doi.org/10.1029/2002JA009812
33.
33. D. I. Pontin, “ Three-dimensional magnetic reconnection regimes: A review,” Adv. Space Res. 47, 1508 (2011).
http://dx.doi.org/10.1016/j.asr.2010.12.022
34.
34. G. Hornig and K. Schindler, “ Magnetic topology and the problem of its invariant definition,” Phys. Plasmas 3, 781 (1996).
http://dx.doi.org/10.1063/1.871778
35.
35. D. W. Longcope, “ Topological methods for the analysis of solar magnetic fields,” Living Rev. Sol. Phys. 2, 7 (2005).
http://dx.doi.org/10.12942/lrsp-2005-7
36.
36. A. L. Haynes and C. E. Parnell, “ A method for finding three-dimensional magnetic skeletons,” Phys. Plasmas 17, 092903 (2010).
http://dx.doi.org/10.1063/1.3467499
37.
37. C. E. Parnell, A. L. Haynes, and K. Galsgaard, “ Structure of magnetic separators and separator reconnection,” J. Geophys. Res. 115, 2102, doi:10.1029/2009JA014557 (2010).
http://dx.doi.org/10.1029/2009JA014557
38.
38. M. Hesse and K. Schindler, “ A theoretical foundation of general magnetic reconnection,” J. Geophys. Res. 93, 5559, doi:10.1029/JA093iA06p05559 (1988).
http://dx.doi.org/10.1029/JA093iA06p05559
39.
39. K. Schindler, M. Hesse, and J. Birn, “ General magnetic reconnection, parallel electric fields, and helicity,” J. Geophys. Res. 93, 5547, doi:10.1029/JA093iA06p05547 (1988).
http://dx.doi.org/10.1029/JA093iA06p05547
40.
40. E. R. Priest and T. G. Forbes, “ Magnetic flipping—reconnection in three dimensions without null points,” J. Geophys. Res. 97, 1521, doi:10.1029/91JA02435 (1992).
http://dx.doi.org/10.1029/91JA02435
41.
41. G. Aulanier, E. Pariat, P. Démoulin, and C. R. DeVore, “ Slip-running reconnection in quasi-separatrix layers,” Sol. Phys. 238, 347 (2006).
http://dx.doi.org/10.1007/s11207-006-0230-2
42.
42. M. Janvier, G. Aulanier, E. Pariat, and P. Démoulin, “ The standard flare model in three dimensions. III. Slip-running reconnection properties,” Astron. Astrophys. 555, A77 (2013).
http://dx.doi.org/10.1051/0004-6361/201321164
43.
43. T. G. Forbes, E. W. Hones, S. J. Bame, J. R. Asbridge, G. Paschmann, N. Sckopke, and C. T. Russell, “ Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery,” Geophys. Res. Lett. 8, 261, doi:10.1029/GL008i003p00261 (1981).
http://dx.doi.org/10.1029/GL008i003p00261
44.
44. H. Hasegawa, A. Retinò, A. Vaivads, Y. Khotyaintsev, R. Nakamura, T. Takada, Y. Miyashita, H. Rème, and E. A. Lucek, “ Retreat and reformation of X-line during quasi-continuous tailward-of-the-cusp reconnection under northward IMF,” Geophys. Res. Lett. 35, L15104, doi:10.1029/2008GL034767 (2008).
http://dx.doi.org/10.1029/2008GL034767
45.
45. M. Oka, T.-D. Phan, J. P. Eastwood, V. Angelopoulos, N. A. Murphy, M. Øieroset, Y. Miyashita, M. Fujimoto, J. McFadden, and D. Larson, “ Magnetic reconnection X-line retreat associated with dipolarization of the Earth's magnetosphere,” Geophys. Res. Lett. 38, 20105, doi:10.1029/2011GL049350 (2011).
http://dx.doi.org/10.1029/2011GL049350
46.
46. X. Cao, Z. Y. Pu, A. M. Du, V. M. Mishin, X. G. Wang, C. J. Xiao, T. L. Zhang, V. Angelopoulos, J. P. McFadden, and K. H. Glassmeier, “ On the retreat of near-Earth neutral line during substorm expansion phase: A THEMIS case study during the 9 January 2008 substorm,” Ann. Geophys. 30, 143 (2012).
http://dx.doi.org/10.5194/angeo-30-143-2012
47.
47. F. D. Wilder, S. Eriksson, K. J. Trattner, P. A. Cassak, S. A. Fuselier, and B. Lybekk, “ Observation of a retreating x line and magnetic islands poleward of the cusp during northward interplanetary magnetic field conditions,” J. Geophys. Res. 119, 9643, doi:10.1002/2014JA020453 (2014).
http://dx.doi.org/10.1002/2014JA020453
48.
48. M. Swisdak, B. N. Rogers, J. F. Drake, and M. A. Shay, “ Diamagnetic suppression of component magnetic reconnection at the magnetopause,” J. Geophys. Res. 108, 1218, doi:10.1029/2002JA009726 (2003).
http://dx.doi.org/10.1029/2002JA009726
49.
49. T. D. Phan, G. Paschmann, J. T. Gosling, M. Oieroset, M. Fujimoto, J. F. Drake, and V. Angelopoulos, “ The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from magnetopause observations,” Geophys. Res. Lett. 40, 11, doi:10.1029/2012GL054528 (2013).
http://dx.doi.org/10.1029/2012GL054528
50.
50. B. Rogers and L. Zakharov, “ Nonlinear -stabilization of the m = 1 mode in tokamaks,” Phys. Plasmas 2, 3420 (1995).
http://dx.doi.org/10.1063/1.871124
51.
51. M. T. Beidler and P. A. Cassak, “ Model for incomplete reconnection in sawtooth crashes,” Phys. Rev. Lett. 107, 255002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.255002
52.
52. M. Inomoto, S. P. Gerhardt, M. Yamada, H. Ji, E. Belova, A. Kuritsyn, and Y. Ren, “ Coupling between global geometry and the local Hall effect leading to reconnection-layer symmetry breaking,” Phys. Rev. Lett. 97, 135002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.135002
53.
53. J. Yoo, M. Yamada, H. Ji, J. Jara-Almonte, C. E. Myers, and L.-J. Chen, “ Laboratory study of magnetic reconnection with a density asymmetry across the current sheet,” Phys. Rev. Lett. 113, 095002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.095002
54.
54. N. A. Murphy and C. R. Sovinec, “ Global axisymmetric simulations of two-fluid reconnection in an experimentally relevant geometry,” Phys. Plasmas 15, 042313 (2008).
http://dx.doi.org/10.1063/1.2904600
55.
55. V. S. Lukin and M. G. Linton, “ Three-dimensional magnetic reconnection through a moving magnetic null,” Nonlinear Processes Geophys. 18, 871 (2011).
http://dx.doi.org/10.5194/npg-18-871-2011
56.
56. T. G. Forbes and L. W. Acton, “ Reconnection and field line shrinkage in solar flares,” Astrophys. J. 459, 330 (1996).
http://dx.doi.org/10.1086/176896
57.
57. S. L. Savage, D. E. McKenzie, K. K. Reeves, T. G. Forbes, and D. W. Longcope, “ Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 ‘Cartwheel CME’ flare,” Astrophys. J. 722, 329 (2010).
http://dx.doi.org/10.1088/0004-637X/722/1/329
58.
58. P. A. Cassak and M. A. Shay, “ Scaling of asymmetric magnetic reconnection: General theory and collisional simulations,” Phys. Plasmas 14, 102114 (2007).
http://dx.doi.org/10.1063/1.2795630
59.
59. P. A. Cassak and M. A. Shay, “ Scaling of asymmetric Hall magnetic reconnection,” Geophys. Res. Lett. 35, 19102, doi:10.1029/2008GL035268 (2008).
http://dx.doi.org/10.1029/2008GL035268
60.
60. P. A. Cassak and M. A. Shay, “ Structure of the dissipation region in fluid simulations of asymmetric magnetic reconnection,” Phys. Plasmas 16, 055704 (2009).
http://dx.doi.org/10.1063/1.3086867
61.
61. N. A. Murphy, C. R. Sovinec, and P. A. Cassak, “ Magnetic reconnection with asymmetry in the outflow direction,” J. Geophys. Res. 115, 9206, doi:10.1029/2009JA015183 (2010).
http://dx.doi.org/10.1029/2009JA015183
62.
62. N. A. Murphy, “ Resistive magnetohydrodynamic simulations of X-line retreat during magnetic reconnection,” Phys. Plasmas 17, 112310 (2010).
http://dx.doi.org/10.1063/1.3494570
63.
63. M. Oka, M. Fujimoto, T. K. M. Nakamura, I. Shinohara, and K.-I. Nishikawa, “ Magnetic reconnection by a self-retreating X line,” Phys. Rev. Lett. 101, 205004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.205004
64.
64. N. A. Murphy and V. S. Lukin, “ Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” Astrophys. J. 805, 134 (2015).
http://dx.doi.org/10.1088/0004-637X/805/2/134
65.
65. N. A. Murphy, M. P. Miralles, C. L. Pope, J. C. Raymond, H. D. Winter, K. K. Reeves, D. B. Seaton, A. A. van Ballegooijen, and J. Lin, “ Asymmetric magnetic reconnection in solar flare and coronal mass ejection current sheets,” Astrophys. J. 751, 56 (2012).
http://dx.doi.org/10.1088/0004-637X/751/1/56
66.
66. G. L. Siscoe, G. M. Erickson, B. U. Sonnerup, N. C. Maynard, J. A. Schoendorf, K. D. Siebert, D. R. Weimer, W. W. White, and G. R. Wilson, “ Flow-through magnetic reconnection,” Geophys. Res. Lett. 29, 4-1, doi:10.1029/2001GL013536 (2002).
http://dx.doi.org/10.1029/2001GL013536
67.
67. N. C. Maynard, C. J. Farrugia, W. J. Burke, D. M. Ober, F. S. Mozer, H. Rème, M. Dunlop, and K. D. Siebert, “ Cluster observations of the dusk flank magnetopause near the sash: Ion dynamics and flow-through reconnection,” J. Geophys. Res. 117, A10201, doi:10.1029/2012JA017703 (2012).
http://dx.doi.org/10.1029/2012JA017703
68.
68. J. M. Greene, “ Reconnection of vorticity lines and magnetic lines,” Phys. Fluids B 5, 2355 (1993).
http://dx.doi.org/10.1063/1.860718
69.
69. T. Lindeberg, “ Scale-space theory: A basic tool for analyzing structures at different scales,” J. Appl. Stat. 21, 225 (1994).
http://dx.doi.org/10.1080/757582976
70.
70. T. Klein and T. Ertl, “ Scale-space tracking of critical points in 3d vector fields,” in Topology-based Methods in Visualization, Mathematics and Visualization, edited by H. Hauser, H. Hagen, and H. Theisel ( Springer, Berlin, Heidelberg, 2007) pp. 3549.
71.
71. L. Biermann, “ Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum,” Z. Naturforschung 5, 65 (1950); available at http://zfn.mpdl.mpg.de/data/Reihe_A/5/ZNA-1950-5a-0065.pdf.
72.
72. R. M. Kulsrud, Plasma Physics for Astrophysics ( Princeton University Press, Princeton, NJ, 2005).
73.
73. E. R. Priest, D. P. Lonie, and V. S. Titov, “ Bifurcations of magnetic topology by the creation or annihilation of null points,” J. Plasma Phys. 56, 507 (1996);
http://dx.doi.org/10.1017/S0022377800019449
73. D. S. Brown and E. R. Priest, “ Topological bifurcations in three-dimensional magnetic fields,” Proc. R. Soc. London, Ser. A 455, 3931 (1999);
http://dx.doi.org/10.1098/rspa.1999.0484
73. D. S. Brown and E. R. Priest, “ The topological behaviour of 3D null points in the Sun's corona,” Astron. Astrophys 367, 339 (2001).
http://dx.doi.org/10.1051/0004-6361:20010016
74.
74. K. Deimling, Nonlinear Functional Analysis ( Springer-Verlag, New York, 1985).
75.
75. W. A. Newcomb, “ Motion of magnetic lines of force,” Ann. Phys. 3, 347 (1958).
http://dx.doi.org/10.1016/0003-4916(58)90024-1
76.
76. D. P. Stern, “ The motion of magnetic field lines,” Space Sci. Rev. 6, 147 (1966).
http://dx.doi.org/10.1007/BF00222592
77.
77. V. M. Vasyliunas, “ Nonuniqueness of magnetic field line motion,” J. Geophys. Res. 77, 6271, doi:10.1029/JA077i031p06271 (1972).
http://dx.doi.org/10.1029/JA077i031p06271
78.
78. J. M. Greene, “ Locating three-dimensional roots by a bisection method,” J. Comput. Phys. 98, 194 (1992).
http://dx.doi.org/10.1016/0021-9991(92)90137-N
79.
79. A. L. Haynes and C. E. Parnell, “ A trilinear method for finding null points in a three-dimensional vector space,” Phys. Plasmas 14, 082107 (2007).
http://dx.doi.org/10.1063/1.2756751
80.
80. J. Cullum, “ Numerical differentiation and regularization,” SIAM J. Numer. Anal. 8, 254 (1971).
http://dx.doi.org/10.1137/0708026
81.
81. R. Chartrand, “ Numerical differentiation of noisy, nonsmooth data,” ISRN Appl. Math. 2011, 164564.
http://dx.doi.org/10.5402/2011/164564
82.
82. J. K. Edmondson, S. K. Antiochos, C. R. DeVore, B. J. Lynch, and T. H. Zurbuchen, “ Interchange reconnection and coronal hole dynamics,” Astrophys. J. 714, 517 (2010).
http://dx.doi.org/10.1088/0004-637X/714/1/517
83.
83. C. Shen, J. Lin, and N. A. Murphy, “ Numerical experiments on fine structure within reconnecting current sheets in solar flares,” Astrophys. J. 737, 14 (2011).
http://dx.doi.org/10.1088/0004-637X/737/1/14
84.
84. D. S. Brown and E. R. Priest, “ The topological behaviour of stable magnetic separators,” Sol. Phys. 190, 25 (1999).
http://dx.doi.org/10.1023/A:1005221503925
85.
85. V. M. Vasyliunas, “ Theoretical models of magnetic field line merging. I,” Rev. Geophys. Space Phys. 13, 303, doi:10.1029/RG013i001p00303 (1975).
http://dx.doi.org/10.1029/RG013i001p00303
86.
86.Null points are also known as neutral points, fixed points, stationary points, equilibrium points, critical points, singular points, and singularities. Separators are also known as saddle connectors and separation/attachment lines. Separatrix surfaces are also known as fans and separation surfaces.
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/10/10.1063/1.4934929
Loading
/content/aip/journal/pop/22/10/10.1063/1.4934929
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/10/10.1063/1.4934929
2015-10-30
2016-12-06

Abstract

While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/10/1.4934929.html;jsessionid=N5fXrB6KXR-DOn2obLsCV2K_.x-aip-live-03?itemId=/content/aip/journal/pop/22/10/10.1063/1.4934929&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/10/10.1063/1.4934929&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/10/10.1063/1.4934929'
Right1,Right2,Right3,