Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications ( Cambridge University Press, Cambridge, 2000).
2.Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations, edited by J. Birn and E. R. Priest ( Cambridge University Press, Cambridge, 2007).
3. E. G. Zweibel and M. Yamada, “ Magnetic reconnection in astrophysical and laboratory plasmas,” Annu. Rev. Astron. Astrophys. 47, 291 (2009).
4. M. Yamada, R. Kulsrud, and H. Ji, “ Magnetic reconnection,” Rev. Mod. Phys. 82, 603 (2010).
5. S. W. H. Cowley, “ A qualitative study of the reconnection between the Earth's magnetic field and an interplanetary field of arbitrary orientation,” Radio Sci. 8, 903, doi:10.1029/RS008i011p00903 (1973).
6. S. Fukao, M. Ugai, and T. Tsuda, “ Topological study of magnetic field near a neutral point,” RISRJ 29, 133 (1975).
7. J. M. Greene, “ Geometrical properties of three-dimensional reconnecting magnetic fields with nulls,” J. Geophys. Res. 93, 8583, doi:10.1029/JA093iA08p08583 (1988).
8. Y.-T. Lau and J. M. Finn, “ Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines,” Astrophys. J. 350, 672 (1990).
9. C. E. Parnell, J. M. Smith, T. Neukirch, and E. R. Priest, “ The structure of three-dimensional magnetic neutral points,” Phys. Plasmas 3, 759 (1996).
10. C. J. Xiao, X. G. Wang, Z. Y. Pu, H. Zhao, J. X. Wang, Z. W. Ma, S. Y. Fu, M. G. Kivelson, Z. X. Liu, Q. G. Zong, K. H. Glassmeier, A. Balogh, A. Korth, H. Reme, and C. P. Escoubet, “ In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail,” Nat. Phys. 2, 478 (2006).
11. C. J. Xiao, X. G. Wang, Z. Y. Pu, Z. W. Ma, H. Zhao, G. P. Zhou, J. X. Wang, M. G. Kivelson, S. Y. Fu, Z. X. Liu, Q. G. Zong, M. W. Dunlop, K.-H. Glassmeier, E. Lucek, H. Reme, I. Dandouras, and C. P. Escoubet, “ Satellite observations of separator-line geometry of three-dimensional magnetic reconnection,” Nat. Phys. 3, 609 (2007).
12. J.-S. He, C.-Y. Tu, H. Tian, C.-J. Xiao, X.-G. Wang, Z.-Y. Pu, Z.-W. Ma, M. W. Dunlop, H. Zhao, G.-P. Zhou, J.-X. Wang, S.-Y. Fu, Z.-X. Liu, Q.-G. Zong, K.-H. Glassmeier, H. Reme, I. Dandouras, and C. P. Escoubet, “ A magnetic null geometry reconstructed from Cluster spacecraft observations,” J. Geophys. Res. 113, A05205, doi:10.1029/2007JA012609 (2008).
13. D. E. Wendel and M. L. Adrian, “ Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath,” J. Geophys. Res. 118, 1571, doi:10.1002/jgra.50234 (2013).
14. R. Guo, Z. Pu, C. Xiao, X. Wang, S. Fu, L. Xie, Q. Zong, J. He, Z. Yao, J. Zhong, and J. Li, “ Separator reconnection with antiparallel/component features observed in magnetotail plasmas,” J. Geophys. Res. 118, 6116, doi:10.1002/jgra.50569 (2013).
15. H. S. Fu, A. Vaivads, Y. V. Khotyaintsev, V. Olshevsky, M. André, J. B. Cao, S. Y. Huang, A. Retinò, and G. Lapenta, “ How to find magnetic nulls and reconstruct field topology with MMS data?,” J. Geophys. Res. 120, 3758, doi:10.1002/2015JA021082 (2015).
16. V. Olshevsky, A. Divin, E. Eriksson, S. Markidis, and G. Lapenta, “ Energy dissipation in magnetic null points at kinetic scales,” Astrophys. J. 807, 155 (2015).
17. B. Filippov, “ Observation of a 3D magnetic null point in the solar corona,” Sol. Phys. 185, 297 (1999).
18. G. Aulanier, E. E. DeLuca, S. K. Antiochos, R. A. McMullen, and L. Golub, “ The topology and evolution of the Bastille day flare,” Astrophys. J. 540, 1126 (2000).
19. H. Zhao, J.-X. Wang, J. Zhang, C.-J. Xiao, and H.-M. Wang, “ Determination of the topology skeleton of magnetic fields in a solar active region,” Chin. J. Astron. Astrophys. 8, 133 (2008).
20. D. W. Longcope and C. E. Parnell, “ The number of magnetic null points in the quiet sun corona,” Sol. Phys. 254, 51 (2009).
21. M. S. Freed, D. W. Longcope, and D. E. McKenzie, “ Three-year global survey of coronal null points from potential-field-source-surface (PFSS) modeling and solar dynamics observatory (SDO) observations,” Sol. Phys. 290, 467 (2015).
22. S. J. Edwards and C. E. Parnell, “ Null point distribution in global coronal potential field extrapolations,” Sol. Phys. 290, 2055 (2015).
23. S. Masson, E. Pariat, G. Aulanier, and C. J. Schrijver, “ The nature of flare ribbons in coronal null-point topology,” Astrophys. J. 700, 559 (2009).
24. P. Démoulin, J. C. Hénoux, and C. H. Mandrini, “ Are magnetic null points important in solar flares?,” Astron. Astrophys. 285, 1023 (1994).
25. G. Barnes, “ On the relationship between coronal magnetic null points and solar eruptive events,” Astrophys. J. Lett. 670, L53 (2007).
26. R. M. Close, C. E. Parnell, and E. R. Priest, “ Separators in 3D quiet-sun magnetic fields,” Sol. Phys. 225, 21 (2004).
27. S. Régnier, C. E. Parnell, and A. L. Haynes, “ A new view of quiet-Sun topology from Hinode/SOT,” Astron. Astrophys. 484, L47 (2008).
28. S. Servidio, W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk, “ Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence,” Phys. Rev. Lett. 102, 115003 (2009).
29. S. Servidio, W. H. Matthaeus, M. A. Shay, P. Dmitruk, P. A. Cassak, and M. Wan, “ Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence,” Phys. Plasmas 17, 032315 (2010).
30. R. C. Maclean, C. E. Parnell, and K. Galsgaard, “ Is null-point reconnection important for solar flux emergence?,” Sol. Phys. 260, 299 (2009).
31. C. E. Parnell, R. C. Maclean, and A. L. Haynes, “ The detection of numerous magnetic separators in a three-dimensional magnetohydrodynamic model of solar emerging flux,” Astrophys. J. 725, L214 (2010).
32. E. R. Priest, G. Hornig, and D. I. Pontin, “ On the nature of three-dimensional magnetic reconnection,” J. Geophys. Res. 108, 1285, doi:10.1029/2002JA009812 (2003).
33. D. I. Pontin, “ Three-dimensional magnetic reconnection regimes: A review,” Adv. Space Res. 47, 1508 (2011).
34. G. Hornig and K. Schindler, “ Magnetic topology and the problem of its invariant definition,” Phys. Plasmas 3, 781 (1996).
35. D. W. Longcope, “ Topological methods for the analysis of solar magnetic fields,” Living Rev. Sol. Phys. 2, 7 (2005).
36. A. L. Haynes and C. E. Parnell, “ A method for finding three-dimensional magnetic skeletons,” Phys. Plasmas 17, 092903 (2010).
37. C. E. Parnell, A. L. Haynes, and K. Galsgaard, “ Structure of magnetic separators and separator reconnection,” J. Geophys. Res. 115, 2102, doi:10.1029/2009JA014557 (2010).
38. M. Hesse and K. Schindler, “ A theoretical foundation of general magnetic reconnection,” J. Geophys. Res. 93, 5559, doi:10.1029/JA093iA06p05559 (1988).
39. K. Schindler, M. Hesse, and J. Birn, “ General magnetic reconnection, parallel electric fields, and helicity,” J. Geophys. Res. 93, 5547, doi:10.1029/JA093iA06p05547 (1988).
40. E. R. Priest and T. G. Forbes, “ Magnetic flipping—reconnection in three dimensions without null points,” J. Geophys. Res. 97, 1521, doi:10.1029/91JA02435 (1992).
41. G. Aulanier, E. Pariat, P. Démoulin, and C. R. DeVore, “ Slip-running reconnection in quasi-separatrix layers,” Sol. Phys. 238, 347 (2006).
42. M. Janvier, G. Aulanier, E. Pariat, and P. Démoulin, “ The standard flare model in three dimensions. III. Slip-running reconnection properties,” Astron. Astrophys. 555, A77 (2013).
43. T. G. Forbes, E. W. Hones, S. J. Bame, J. R. Asbridge, G. Paschmann, N. Sckopke, and C. T. Russell, “ Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery,” Geophys. Res. Lett. 8, 261, doi:10.1029/GL008i003p00261 (1981).
44. H. Hasegawa, A. Retinò, A. Vaivads, Y. Khotyaintsev, R. Nakamura, T. Takada, Y. Miyashita, H. Rème, and E. A. Lucek, “ Retreat and reformation of X-line during quasi-continuous tailward-of-the-cusp reconnection under northward IMF,” Geophys. Res. Lett. 35, L15104, doi:10.1029/2008GL034767 (2008).
45. M. Oka, T.-D. Phan, J. P. Eastwood, V. Angelopoulos, N. A. Murphy, M. Øieroset, Y. Miyashita, M. Fujimoto, J. McFadden, and D. Larson, “ Magnetic reconnection X-line retreat associated with dipolarization of the Earth's magnetosphere,” Geophys. Res. Lett. 38, 20105, doi:10.1029/2011GL049350 (2011).
46. X. Cao, Z. Y. Pu, A. M. Du, V. M. Mishin, X. G. Wang, C. J. Xiao, T. L. Zhang, V. Angelopoulos, J. P. McFadden, and K. H. Glassmeier, “ On the retreat of near-Earth neutral line during substorm expansion phase: A THEMIS case study during the 9 January 2008 substorm,” Ann. Geophys. 30, 143 (2012).
47. F. D. Wilder, S. Eriksson, K. J. Trattner, P. A. Cassak, S. A. Fuselier, and B. Lybekk, “ Observation of a retreating x line and magnetic islands poleward of the cusp during northward interplanetary magnetic field conditions,” J. Geophys. Res. 119, 9643, doi:10.1002/2014JA020453 (2014).
48. M. Swisdak, B. N. Rogers, J. F. Drake, and M. A. Shay, “ Diamagnetic suppression of component magnetic reconnection at the magnetopause,” J. Geophys. Res. 108, 1218, doi:10.1029/2002JA009726 (2003).
49. T. D. Phan, G. Paschmann, J. T. Gosling, M. Oieroset, M. Fujimoto, J. F. Drake, and V. Angelopoulos, “ The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from magnetopause observations,” Geophys. Res. Lett. 40, 11, doi:10.1029/2012GL054528 (2013).
50. B. Rogers and L. Zakharov, “ Nonlinear -stabilization of the m = 1 mode in tokamaks,” Phys. Plasmas 2, 3420 (1995).
51. M. T. Beidler and P. A. Cassak, “ Model for incomplete reconnection in sawtooth crashes,” Phys. Rev. Lett. 107, 255002 (2011).
52. M. Inomoto, S. P. Gerhardt, M. Yamada, H. Ji, E. Belova, A. Kuritsyn, and Y. Ren, “ Coupling between global geometry and the local Hall effect leading to reconnection-layer symmetry breaking,” Phys. Rev. Lett. 97, 135002 (2006).
53. J. Yoo, M. Yamada, H. Ji, J. Jara-Almonte, C. E. Myers, and L.-J. Chen, “ Laboratory study of magnetic reconnection with a density asymmetry across the current sheet,” Phys. Rev. Lett. 113, 095002 (2014).
54. N. A. Murphy and C. R. Sovinec, “ Global axisymmetric simulations of two-fluid reconnection in an experimentally relevant geometry,” Phys. Plasmas 15, 042313 (2008).
55. V. S. Lukin and M. G. Linton, “ Three-dimensional magnetic reconnection through a moving magnetic null,” Nonlinear Processes Geophys. 18, 871 (2011).
56. T. G. Forbes and L. W. Acton, “ Reconnection and field line shrinkage in solar flares,” Astrophys. J. 459, 330 (1996).
57. S. L. Savage, D. E. McKenzie, K. K. Reeves, T. G. Forbes, and D. W. Longcope, “ Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 ‘Cartwheel CME’ flare,” Astrophys. J. 722, 329 (2010).
58. P. A. Cassak and M. A. Shay, “ Scaling of asymmetric magnetic reconnection: General theory and collisional simulations,” Phys. Plasmas 14, 102114 (2007).
59. P. A. Cassak and M. A. Shay, “ Scaling of asymmetric Hall magnetic reconnection,” Geophys. Res. Lett. 35, 19102, doi:10.1029/2008GL035268 (2008).
60. P. A. Cassak and M. A. Shay, “ Structure of the dissipation region in fluid simulations of asymmetric magnetic reconnection,” Phys. Plasmas 16, 055704 (2009).
61. N. A. Murphy, C. R. Sovinec, and P. A. Cassak, “ Magnetic reconnection with asymmetry in the outflow direction,” J. Geophys. Res. 115, 9206, doi:10.1029/2009JA015183 (2010).
62. N. A. Murphy, “ Resistive magnetohydrodynamic simulations of X-line retreat during magnetic reconnection,” Phys. Plasmas 17, 112310 (2010).
63. M. Oka, M. Fujimoto, T. K. M. Nakamura, I. Shinohara, and K.-I. Nishikawa, “ Magnetic reconnection by a self-retreating X line,” Phys. Rev. Lett. 101, 205004 (2008).
64. N. A. Murphy and V. S. Lukin, “ Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” Astrophys. J. 805, 134 (2015).
65. N. A. Murphy, M. P. Miralles, C. L. Pope, J. C. Raymond, H. D. Winter, K. K. Reeves, D. B. Seaton, A. A. van Ballegooijen, and J. Lin, “ Asymmetric magnetic reconnection in solar flare and coronal mass ejection current sheets,” Astrophys. J. 751, 56 (2012).
66. G. L. Siscoe, G. M. Erickson, B. U. Sonnerup, N. C. Maynard, J. A. Schoendorf, K. D. Siebert, D. R. Weimer, W. W. White, and G. R. Wilson, “ Flow-through magnetic reconnection,” Geophys. Res. Lett. 29, 4-1, doi:10.1029/2001GL013536 (2002).
67. N. C. Maynard, C. J. Farrugia, W. J. Burke, D. M. Ober, F. S. Mozer, H. Rème, M. Dunlop, and K. D. Siebert, “ Cluster observations of the dusk flank magnetopause near the sash: Ion dynamics and flow-through reconnection,” J. Geophys. Res. 117, A10201, doi:10.1029/2012JA017703 (2012).
68. J. M. Greene, “ Reconnection of vorticity lines and magnetic lines,” Phys. Fluids B 5, 2355 (1993).
69. T. Lindeberg, “ Scale-space theory: A basic tool for analyzing structures at different scales,” J. Appl. Stat. 21, 225 (1994).
70. T. Klein and T. Ertl, “ Scale-space tracking of critical points in 3d vector fields,” in Topology-based Methods in Visualization, Mathematics and Visualization, edited by H. Hauser, H. Hagen, and H. Theisel ( Springer, Berlin, Heidelberg, 2007) pp. 3549.
71. L. Biermann, “ Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum,” Z. Naturforschung 5, 65 (1950); available at
72. R. M. Kulsrud, Plasma Physics for Astrophysics ( Princeton University Press, Princeton, NJ, 2005).
73. E. R. Priest, D. P. Lonie, and V. S. Titov, “ Bifurcations of magnetic topology by the creation or annihilation of null points,” J. Plasma Phys. 56, 507 (1996);
73. D. S. Brown and E. R. Priest, “ Topological bifurcations in three-dimensional magnetic fields,” Proc. R. Soc. London, Ser. A 455, 3931 (1999);
73. D. S. Brown and E. R. Priest, “ The topological behaviour of 3D null points in the Sun's corona,” Astron. Astrophys 367, 339 (2001).
74. K. Deimling, Nonlinear Functional Analysis ( Springer-Verlag, New York, 1985).
75. W. A. Newcomb, “ Motion of magnetic lines of force,” Ann. Phys. 3, 347 (1958).
76. D. P. Stern, “ The motion of magnetic field lines,” Space Sci. Rev. 6, 147 (1966).
77. V. M. Vasyliunas, “ Nonuniqueness of magnetic field line motion,” J. Geophys. Res. 77, 6271, doi:10.1029/JA077i031p06271 (1972).
78. J. M. Greene, “ Locating three-dimensional roots by a bisection method,” J. Comput. Phys. 98, 194 (1992).
79. A. L. Haynes and C. E. Parnell, “ A trilinear method for finding null points in a three-dimensional vector space,” Phys. Plasmas 14, 082107 (2007).
80. J. Cullum, “ Numerical differentiation and regularization,” SIAM J. Numer. Anal. 8, 254 (1971).
81. R. Chartrand, “ Numerical differentiation of noisy, nonsmooth data,” ISRN Appl. Math. 2011, 164564.
82. J. K. Edmondson, S. K. Antiochos, C. R. DeVore, B. J. Lynch, and T. H. Zurbuchen, “ Interchange reconnection and coronal hole dynamics,” Astrophys. J. 714, 517 (2010).
83. C. Shen, J. Lin, and N. A. Murphy, “ Numerical experiments on fine structure within reconnecting current sheets in solar flares,” Astrophys. J. 737, 14 (2011).
84. D. S. Brown and E. R. Priest, “ The topological behaviour of stable magnetic separators,” Sol. Phys. 190, 25 (1999).
85. V. M. Vasyliunas, “ Theoretical models of magnetic field line merging. I,” Rev. Geophys. Space Phys. 13, 303, doi:10.1029/RG013i001p00303 (1975).
86.Null points are also known as neutral points, fixed points, stationary points, equilibrium points, critical points, singular points, and singularities. Separators are also known as saddle connectors and separation/attachment lines. Separatrix surfaces are also known as fans and separation surfaces.

Data & Media loading...


Article metrics loading...



While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd