Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. F. Kolb, A. A. H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, M. Stacey, and K. H. Schoenbach, “ Cold atmospheric pressure air plasma jet for medical applications,” Appl. Phys. Lett. 92(24), 241501 (2008).
2. K. D. Weltmann, M. Polak, K. Masur, T. von Woedtke, J. Winter, and S. Reuter, “ Plasma processes and plasma sources in medicine,” Contrib. Plasma Phys. 52(7), 644 (2012).
3. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, “ Plasma medicine: An introductory review,” New J. Phys. 11(11), 115012 (2009).
4. H. J. Ahn, K. I. Kim, G. Kim, E. Moon, S. S. Yang, and J. S. Lee, “ Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals,” PLoS One 6(11), e28154 (2011).
5. T. von Woedtke, S. Reuter, K. Masur, and K.-D. Weltmann, “ Plasmas for medicine,” Phys. Rep. 530(4), 291 (2013).
6. A. Kramer, J. Lademann, C. Bender, A. Sckell, B. Hartmann, S. Münch, P. Hinz, A. Ekkernkamp, R. Matthes, I. Koban, I. Partecke, C. D. Heidecke, K. Masur, S. Reuter, K. D. Weltmann, S. Koch, and O. Assadian, “ Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds,” Clin. Plasma Med. 1(1), 11 (2013).
7. G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, “ Gas plasma: Medical uses and developments in wound care,” Plasma Processes Polym. 7(3–4), 194211 (2010).
8. J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, “ Plasma medicine: Possible applications in dermatology,” J. Ger. Soc. Dermatol.: JDDG 8(12), 968976 (2010).
9. J. Wang, X. Liu, D. Liu, X. Lu, and Y. Zhang, “ Mathematical model of gas plasma applied to chronic wounds,” Phys. Plasmas (1994-present) 20(11), 113507 (2013).
10. M. Dünnbier, A. Schmidt-Bleker, J. Winter, M. Wolfram, R. Hippler, K.-D. Weltmann, and S. Reuter, “ Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry,” J. Phys. D: Appl. Phys. 46(43), 435203 (2013).
11. S. Reuter, K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “ Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet,” Plasma Sources Sci. Technolo. 18(1), 0150061 (2009).
12. S. Reuter, J. Winter, S. Iseni, S. Peters, A. Schmidt-Bleker, M. Dunnbier, J. Schafer, R. Foest, and K. D. Weltmann, “ Detection of ozone in a MHz argon plasma bullet jet,” Plasma Sources Sci. Technol. 21(3), 0340151 (2012).
13. J. Waskoenig, K. Niemi, N. Knake, L. M. Graham, S. Reuter, V. Schulz-von der Gathen, and T. Gans, “ Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet,” Plasma Sources Sci. Tehnol. 19(4), 045018 (2010).
14. E. Stoffels, R. E. J. Sladek, and I. E. Kieft, “ Gas plasma effects on living cells,” Phys. Scr. T107, 79 (2004).
15. R. Brandenburg, H. Lange, T. von Woedtke, M. Stieber, E. Kindel, J. Ehlbeck, and K. D. Weltmann, “ Antimicrobial effects of UV and VUV radiation of nonthermal plasma jets,” IEEE Trans. Plasma Sci. 37(6), 877883 (2009).
16. R. Foest, E. Kindel, H. Lange, A. Ohl, M. Stieber, and K. D. Weltmann, “ RF capillary jet—a tool for localized surface treatment,” Contrib. Plasma Phys. 47(1–2), 119 (2007).
17. S. Reuter, Formation Mechanisms of Atomic Oxygen in an Atmospheric Pressure Plasma Jet Characterised by Spectroscopic Methods ( Cuvillier, 2008).
18. M. H. Stans, “ Bond dissociation energies in simple molecules,” NIST Spec. Publ. 1, 1 (1970).
19. Y.-R. Luo and J. Kerr, Bond Dissociation Energies, CRC Handbook of Chemistry and Physics, Vol. 89 ( CRC, 2012).
20. K.-D. Weltmann, E. Kindel, R. Brandenburg, C. Meyer, R. Bussiahn, C. Wilke, and T. von Woedtke, “ Atmospheric pressure plasma jet for medical therapy: Plasma parameters and risk estimation RID G-6504-2011,” Contrib. Plasma Phys. 49(9), 631 (2009).
21. S. Iseni, A. Schmidt-Bleker, J. Winter, K. D. Weltmann, and S. Reuter, “ Atmospheric pressure streamer follows the turbulent argon air boundary in a MHz argon plasma jet investigated by OH-tracer PLIF spectroscopy,” J. Phys. D: Appl. Phys. 47(15), 152001 (2014).
22. J. Winter, K. Wende, K. Masur, S. Iseni, M. Dunnbier, M. U. Hammer, H. Tresp, K. D. Weltmann, and S. Reuter, “ Feed gas humidity: A vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells,” J. Phys. D: Appl. Phys. 46(29), 295401 (2013).
23. H. Tresp, M. U. Hammer, J. Winter, K. D. Weltmann, and S. Reuter, “ Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy,” J. Phys. D: Appl. Phys. 46(43), 435401 (2013).
24. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine ( Oxford University Press, Oxford, 2007).
25. S. Reuter, J. Winter, A. Schmidt-Bleker, D. Schroeder, H. Lange, N. Knake, V. Schulz-von der Gathen, and K. D. Weltmann, “ Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion,” Plasma Sources Sci. Technol. 21(2), 024005 (2012).
26. I. C. o. and N.-I. R. Protection, “ Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Phys. 87(2), 171186 (2004).
27. B. der Feinmechanik, “ Elektrotechnik: Expositionsgrenzwerte für künstliche optische Strahlung,” in Berufsgenossenschaftliche Informationen für Sicherheit und Gesundheit bei der Arbeit ( HVBG in cooperation with Carl Heymanns Verlag, 2004).
28. R. Bussiahn, N. Lembke, R. Gesche, T. von Woedtke, and K.-D. Weltmann, “ Plasma sources for biomedical applications,” HygMed 38(5), 212216 (2013).
29. S. A. Norberg, W. Tian, E. Johnsen, and M. J. Kushner, “ Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid,” J. Phys. D: Appl. Phys. 47(47), 475203 (2014).
30. S. Reuter, J. Winter, S. Iseni, A. Schmidt-Bleker, M. Dunnbier, K. Masur, K. Wende, and K.-D. Weltmann, “ The influence of feed gas humidity versus ambient humidity on atmospheric pressure plasma jet-effluent chemistry and skin cell viability,” IEEE Trans. Plasma Sci. 43, 3185 (2014).
31. S. Bekeschus, S. Iseni, S. Reuter, K. Masur, and K.-D. Weltmann, “ Nitrogen shielding of an argon plasma jet and its effects on human immune cells,” IEEE Trans. Plasma Sci. 43(3), 776781 (2015).
32. J. Winter, H. Tresp, M. U. Hammer, S. Iseni, S. Kupsch, A. Schmidt-Bleker, K. Wende, M. Dünnbier, K. Masur, K.-D. Weltmann, and S. Reuter, “ Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells,” J. Phys. D: Appl. Phys. 47(28), 285401 (2014).
33. H. Tresp, M. U. Hammer, K.-D. Weltmann, and S. Reuter, “ Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions,” Plasma Med. 3(1–2), 45 (2013).
34. G. Czapski, “ Reaction of ·OH,” Methods Enzymol. 105, 209 (1984).
35. B. Halliwell, eLS ( John Wiley & Sons, Ltd., 2001).
36. J. M. Campos-Martin, G. Blanco-Brieva, and J. L. Fierro, “ Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process,” Angew. Chem. 45(42), 6962 (2006).
37. W. Huebner and C. Carpenter, US Government Printing Office, 1979.
38. B. E. Britigan, T. L. Roeder, and G. R. Buettner, “ Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical,” Biochim. Biophys. Acta 1075(3), 213 (1991).
39. E. Finkelstein, G. M. Rosen, and E. J. Rauckman, “ Spin trapping—Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones,” J. Am. Chem. Soc. 102(15), 4994 (1980).
40. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “ Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O–) in aqueous-solution,” J. Phys. Chem. Ref. Data 17(2), 513886 (1988).
41. A. J. Elliot, “ A pulse-radiolysis study of the temperature-dependence of reactions involving H, Oh and E-Aq in aqueous-solutions,” Radiat. Phys. Chem. 34(5), 753 (1989).
42. S. Reuter, H. Tresp, K. Wende, M. U. Hammer, J. Winter, K. Masur, A. Schmidt-Bleker, and K. D. Weltmann, “ From RONS to ROS: Tailoring plasma jet treatment of skin cells,” IEEE Trans. Plasma Sci. 40(11), 2986 (2012).

Data & Media loading...


Article metrics loading...



Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dHO) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (HO) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O•−) and hydroxyl radicals (OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation,plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUVradiation is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd