Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).
2. K. U. Akli, C. Orban, D. Schumacher, M. Storm, M. Fatenejad, D. Lamb, and R. R. Freeman, Phys. Rev. E 86, 065402 (2012).
3. Y. Glinec, J. Faure, V. Malka, T. Fuchs, H. Szymanowski, and U. Oelfke, Med. Phys. 33, 155 (2006).
4. T. Fuchs, H. Szymanowski, U. Oelfke, Y. Glinec, C. Rechatin, J. Faure, and V. Malka, Phys. Med. Biol. 54, 3315 (2009).
5. N. D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, S. Banerjee, J. Zhang, and D. P. Umstadter, Nature Photon. 8, 28 (2014).
6. N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Phys. Rev. Lett. 93, 195003 (2004).
7. L. Bentson, P. Bolton, R. Carr, D. Dowell, P. Emma et al., SLAC-PUB-11186 (2004).
8. S. M. Hooker, Nature Photon. 7, 775 (2013).
9. J. T. Morrison, E. A. Chowdhury, K. D. Frische, S. Feister, V. M. Ovchinnikov, J. A. Nees, C. Orban, R. R. Freeman, and W. M. Roquemore, Phys. Plasmas (submitted); e-print arXiv:1501.02261 (2015).
10. D. R. Welch, D. V. Rose, R. E. Clark, T. C. Genoni, and T. P. Hughes, Comput. Phys. Commun. 164, 183 (2004).
11. F. Pegoraro, S. V. Bulanov, F. Califano, T. Z. Esirkepov, M. Lontano, J. Meyer-ter-Vehn, N. M. Naumova, A. M. Pukhov, and V. A. Vshivkov, Plasma Phys. Controlled Fusion 39, B261 (1997).
12. A. J. Kemp, Y. Sentoku, and M. Tabak, Phys. Rev. E 79, 066406 (2009).
13. J. May, J. Tonge, F. Fiuza, R. A. Fonseca, L. O. Silva, C. Ren, and W. B. Mori, Phys. Rev. E 84, 025401 (2011).
14. V. M. Ovchinnikov, D. W. Schumacher, M. McMahon, E. A. Chowdhury, C. D. Chen, A. Morace, and R. R. Freeman, Phys. Rev. Lett. 110, 065007 (2013).
15. F. Brunel, Phys. Fluids (1958–1988) 31, 2714 (1988).
16. H. Ruhl, Y. Sentoku, K. Mima, K. A. Tanaka, and R. Kodama, Phys. Rev. Lett. 82, 743 (1999).
17. D. F. Cai, Y. Q. Gu, Z. J. Zheng, T. S. Wen, S. T. Chunyu, Z. B. Wang, and X. D. Yang, Phys. Plasmas 10, 3265 (2003).
18. D. F. Cai, Y. Q. Gu, Z. J. Zheng, W. M. Zhou, X. D. Yang, C. Y. Jiao, H. Chen, T. S. Wen, and S. T. Chunyu, Phys. Rev. E 70, 066410 (2004).
19. M. Chen, Z.-M. Sheng, and J. Zhang, Phys. Plasmas 13, 014504 (2006).
20. H. Habara, K. Adumi, T. Yabuuchi, T. Nakamura, Z. L. Chen, M. Kashihara, R. Kodama, K. Kondo, G. R. Kumar, L. A. Lei et al., Phys. Rev. Lett. 97, 095004 (2006).
21. Z. Li, H. Daido, A. Fukumi, A. Sagisaka, K. Ogura, M. Nishiuchi, S. Orimo, Y. Hayashi, M. Mori, M. Kado et al., Phys. Plasmas 13, 043104 (2006).
22. F. Brandl, B. Hidding, J. Osterholz, D. Hemmers, A. Karmakar, A. Pukhov, and G. Pretzler, Phys. Rev. Lett. 102, 195001 (2009).
23. W. Wang, J. Liu, Y. Cai, C. Wang, L. Liu, C. Xia, A. Deng, Y. Xu, Y. Leng, R. Li et al., Phys. Plasmas 17, 023108 (2010).
24. Y. Tian, J. Liu, W. Wang, C. Wang, A. Deng, C. Xia, W. Li, L. Cao, H. Lu, H. Zhang et al., Phys. Rev. Lett. 109, 115002 (2012).
25. B. Sanyasi Rao, V. Arora, P. Anant Naik, and P. Dass Gupta, Phys. Plasmas 19, 113118 (2012).
26. F. Pérez, A. J. Kemp, L. Divol, C. D. Chen, and P. K. Patel, Phys. Rev. Lett. 111, 245001 (2013).
27.See for details regarding the Red Dragon.
28. R. Paschotta, Encyclopedia of Laser Physics and Technology ( Wiley-VCH, 2008).
29. S. Feister, J. A. Nees, J. T. Morrison, K. D. Frische, C. Orban, E. A. Chowdhury, and W. M. Roquemore, Rev. Sci. Instrum. 85, 11D602 (2014).
30. R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter, Phys. Rev. Lett. 78, 3125 (1997).
31. M. Ammosov, N. B. Delone, and V. P. Krainov, Proc. SPIE 0664, High Intensity Laser Processes, 138 (1986).
32. A. J. Kemp, R. E. W. Pfund, and J. Meyer-Ter-Vehn, Phys. Plasmas 11, 5648 (2004).
33. S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics ( Oxford University Press, 2004).
34. V. M. Ovchinnikov, D. W. Schumacher, G. E. Kemp, A. G. Krygier, L. D. van Woerkom, K. U. Akli, R. R. Freeman, R. B. Stephens, and A. Link, Phys. Plasmas 18, 112702 (2011).
35. G. I. Dudnikova, V. Y. Bychenkov, A. Maksimchuk, G. Mourou, J. Nees, S. G. Bochkarev, and V. A. Vshivkov, Phys. Rev. E 67, 026416 (2003).
36. T. Z. Timur, Zh. Esirkepov, J. K. Koga, A. Sunahara, T. Morita, M. Nishikino, K. Kageyama, H. Nagatomo, K. Nishihara, A. Sagisaka, H. Kotaki et al., Nucl. Instrum. Methods Phys. Res., Sect. A 745, 150 (2014).
37. D. Panasenko, A. J. Shu, A. Gonsalves, K. Nakamura, N. H. Matlis, C. Toth, and W. P. Leemans, J. Appl. Phys. 108, 044913 (2010).
38. M. C. Levy, S. C. Wilks, M. Tabak, and M. G. Baring, Phys. Plasmas 20, 103101 (2013).
39. J. Zheng, K. A. Tanaka, T. Miyakoshi, Y. Kitagawa, R. Kodama, T. Kurahashi, and T. Yamanaka, Phys. Plasmas (1994-Present) 10, 2994 (2003).
40. W. Yu, V. Bychenkov, Y. Sentoku, M. Y. Yu, Z. M. Sheng, and K. Mima, Phys. Rev. Lett. 85, 570 (2000).
41. L. D. Landau and E. Lifshitz, The Theory of Classical Fields ( Elsevier, Oxford, 1975).
42. K. Estabrook and W. L. Kruer, Phys. Fluids 26, 1888 (1983).
43. The pre-plasma density is set low enough that charge separation effects should be minimal. As such the electron macroparticles should respond to the laser electric and magnetic fields as tracer particles. The ions in the simulation were immobile and fixed in ionization state in order to create a neutralizing background. The results we present in this section are insensitive to the exact value of this extremely low density as one would expect.

Data & Media loading...


Article metrics loading...



Laser-accelerated electron beams have been created at a kHz repetition rate from the of intense (∼1018 W/cm2), ∼40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can “inject” electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standing wave acceleration: a highly relativistic case ( ≥ 1), and a moderately relativistic case ( ∼ 0.5) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the and over a wide range of intensities (1017–1019 W cm−2).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd