Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/3/10.1063/1.4916061
1.
1. S. Chandrasekhar , Hydrodynamic and Hydromagnetic Stability ( Oxford University Press, 1961).
2.
2. P. G. Drazin and W. H. Reid , Hydrodynamic Stability ( Cambridge University Press, 1981).
3.
3. J. P. Freidberg , Ideal MHD ( Cambridge University Press, 2014).
4.
4. M. N. Rosenbluth , N. A. Krall , and N. Rostoker , Nucl. Fusion Suppl. 1, 143 (1962).
5.
5. K. V. Roberts and J. B. Taylor , Phys. Rev. Lett. 8, 197 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.197
6.
6. J. D. Huba , Phys. Plasmas 3, 2523 (1996).
http://dx.doi.org/10.1063/1.871970
7.
7. D. Winske , Phys. Plasmas 3, 3966 (1996).
http://dx.doi.org/10.1063/1.871569
8.
8. J. D. Huba and D. Winske , Phys. Plasmas 5, 2305 (1998).
http://dx.doi.org/10.1063/1.872904
9.
9. P. Zhu , D. D. Schnack , F. Ebrahimi , E. G. Zweibel , M. Suzuki , C. C. Hegna , and C. R. Sovinec , Phys. Rev. Lett. 101, 085005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.085005
10.
10. P. W. Xi , X. Q. Xu , T. Y. Xia , W. M. Nevins , and S. S. Kim , Nucl. Fusion 53, 113020 (2013).
http://dx.doi.org/10.1088/0029-5515/53/11/113020
11.
11. R. Goto , H. Miura , A. Ito , M. Sato , and T. Hatori , Plasma Fusion Res. 9, 1403076 (2014).
http://dx.doi.org/10.1585/pfr.9.1403076
12.
12. S. Sakakibara , K. Watanabe , Y. Suzuki , Y. Narushima , S. Ohdachi , N. Nakajima , F. Watanabe , L. Garcia , A. Weller , K. Toi , I. Yamada , K. Tanaka , T. Tokuzawa , K. Ida , H. Yamada , A. Komori , O. Motojima , and the LHD Experimental Group, Plasma Phys. Controlled Fusion 50, 124014 (2008).
http://dx.doi.org/10.1088/0741-3335/50/12/124014
13.
13. S. Sakakibara , K. Watanabe , H. Yamada , Y. Narushima , K. Toi , S. Ohdachi , T. Yamaguchi , K. Narihara , K. Tanaka , T. Tokuzawa , K. Ida , O. Kaneko , K. Kawahata , A. Komori , and LHD Experimental Group, Fusion Sci. Technol. 58, 176 (2010).
14.
14. H. Miura and N. Nakajima , Nucl. Fusion 50, 054006 (2010).
http://dx.doi.org/10.1088/0029-5515/50/5/054006
15.
15. M. Sato , N. Nakajima , K. Watanabe , Y. Todo , and Y. Suzuki , in 24th IAEA Fusion Energy Conference ( San Diego, 2012), p. TH/P3-25.
16.
16. H. Miura , R. Goto , A. Ito , M. Sato , and T. Hatori , in Proceedings of the 25th IAEA Fusion Energy Conference ( Saint Petersberg, 2014), p. TH/P5-67. To appear in http://www-naweb.iaea.org/napc/physics/index.html.
17.
17. S. I. Braginskii , in Reviews of Plasma Physics, edited by M. A. Leontovich ( Consultants Bureau, New York, 1965), Vol. 1, p. 205.
18.
18. D. D. Schnack , D. C. Barnes , D. P. Brennan , C. C. Hegna , E. Held , and C. C. Kim , Phys. Plasmas 13, 058103 (2006).
http://dx.doi.org/10.1063/1.2183738
19.
19. P. Zhu , A. Bhattacharje , and K. Germaschewski , Phys. Rev. Lett. 96, 065001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.065001
20.
20. T. Hatori , H. Miura , A. Ito , M. Sato , and R. Goto , in Bulletin of the 55th APS DPP (2013), PP8.83.
21.
21. A. Miura , J. Geophys. Res. 108, 1076, doi:10.1029/2002JA009563 (2003).
http://dx.doi.org/10.1029/2002JA009563
22.
22. A. I. Smolyakov , Can. J. Phys. 76, 321 (1998).
http://dx.doi.org/10.1139/p98-012
23.
23. E. Belova , Phys. Plasmas 8, 3936 (2001).
http://dx.doi.org/10.1063/1.1389093
24.
24. J. J. Ramos , Phys. Plasmas 12, 052102 (2005).
http://dx.doi.org/10.1063/1.1884128
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/3/10.1063/1.4916061
Loading
/content/aip/journal/pop/22/3/10.1063/1.4916061
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/3/10.1063/1.4916061
2015-03-26
2016-12-09

Abstract

Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low -value. The two effects stabilize the unstable high wave number modes for a certain range of the -value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/3/1.4916061.html;jsessionid=xdfNymJXO9EucyHshu5N1sLV.x-aip-live-02?itemId=/content/aip/journal/pop/22/3/10.1063/1.4916061&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/3/10.1063/1.4916061&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/3/10.1063/1.4916061'
Right1,Right2,Right3,