Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/3/10.1063/1.4916490
1.
1. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
http://dx.doi.org/10.1088/0741-3335/47/5/R01
2.
2. A. Fujisawa, Nucl. Fusion 49, 013001 (2009).
http://dx.doi.org/10.1088/0029-5515/49/1/013001
3.
3. N. Kasuya, M. Yagi, K. Itoh, and S.-I. Itoh, Phys. Plasmas 15, 052302 (2008).
http://dx.doi.org/10.1063/1.2912461
4.
4. S. Inagaki, T. Tokuzawa, K. Itoh, K. Ida, S.-I. Itoh, N. Tamura, N. Kasuya, A. Fujisawa, S. Kubo, T. Shimozuma, T. Ido, S. Nishimura, H. Arakawa, T. Kobayashi, K. Tanaka, Y. Nagashima, K. Kawahata, S. Sudo, H. Yamada, and A. Komori, Phys. Rev. Lett. 107, 115001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.115001
5.
5. T. Kobayashi, S. Inagaki, S.-I. Itoh, K. Itoh, S. Oldenburger, A. Fujisawa, Y. Nagashima, K. Ida, H. Tsuchiya, Y. Nagayama, K. Kawahata, H. Yamada, and the LHD Experimental Group, Plasma Phys. Control. Fusion 54, 115004 (2012).
http://dx.doi.org/10.1088/0741-3335/54/11/115004
6.
6. D. Biskamp and A. Zeiler, Phys. Rev. Lett. 74, 706 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.706
7.
7. M. Sasaki, N. Kasuya, K. Itoh, M. Yagi, and S.-I. Itoh, Nucl. Fusion 54, 114009 (2014).
http://dx.doi.org/10.1088/0029-5515/54/11/114009
8.
8. S. Horihata and M. Sato, J. Phys. Soc. Jpn. 56, 2611 (1987).
http://dx.doi.org/10.1143/JPSJ.56.2611
9.
9. V. P. Lakhin and A. B. Mikhailovskii, Phys. Lett. A 119, 348 (1987).
http://dx.doi.org/10.1016/0375-9601(87)90612-8
10.
10. J. D. Meiss and W. Horton, Phys. Fluids 25, 1838 (1982).
http://dx.doi.org/10.1063/1.863662
11.
11. T. Yamada, S.-I. Itoh, T. Maruta, N. Kasuya, Y. Nagashima, S. Shinohara, K. Terasaka, M. Yagi, S. Inagaki, Y. Kawai, A. Fujisawa, and K. Itoh, Nat. Phys. 4, 721 (2008).
http://dx.doi.org/10.1038/nphys1029
12.
12. Y. Nagashima, S.-I. Itoh, S. Shinohara, M. Fukao, A. Fujisawa, K. Terasaka, Y. Kawai, N. Kasuya, G. R. Tynan, P. H. Diamond, M. Yagi, S. Inagaki, T. Yamada, and K. Itoh, J. Phys. Soc. Jpn. 77, 114501 (2008).
http://dx.doi.org/10.1143/JPSJ.77.114501
13.
13. Z. Yan, J. H. Yu, C. Holland, M. Xu, S. H. Muller, and G. R. Tynan, Phys. Plasmas 15, 092309 (2008).
http://dx.doi.org/10.1063/1.2985836
14.
14. M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Muller, and J. H. Yu, Phys. Plasmas 17, 032311 (2010).
http://dx.doi.org/10.1063/1.3325397
15.
15. H. Arakawa, S. Inagaki, Y. Nagashima, T. Yamada, K. Kamataki, T. Kobayashi, S. Sugita, M. Yagi, N. Kasuya, A. Fujisawa, S.-I. Itoh, and K. Itoh, Plasma Fusion Res. 5, S2044 (2010).
http://dx.doi.org/10.1585/pfr.5.S2044
16.
16. T. Kobayashi, S. Inagaki, H. Arakawa, S. Oldenberger, M. Sasaki, Y. Nagashima, T. Yamada, S. Sugita, M. Yagi, N. Kasuya, A. Fujisawa, S.-I. Itoh, and K. Itoh, Plasma Fusion Res. 6, 2401082 (2011).
http://dx.doi.org/10.1585/pfr.6.2401082
17.
17. H. Arakawa, S. Inagaki, Y. Nagashima, T. Yamada, K. Kamataki, T. Kobayashi, S. Sugita, M. Yagi, N. Kasuya, A. Fujisawa, S.-I. Itoh, and K. Itoh, Plasma Phys. Control. Fusion 52, 105009 (2010).
http://dx.doi.org/10.1088/0741-3335/52/10/105009
18.
18. N. Kasuya, S. Nishimura, M. Yagi, K. Itoh, and S.-I. Itoh, Plasma Sci. Technol. 13, 326 (2011).
http://dx.doi.org/10.1088/1009-0630/13/3/11
19.
19. N. Kasuya, M. Yagi, M. Azumi, K. Itoh, and S.-I. Itoh, J. Phys. Soc. Jpn. 76, 044501 (2007).
http://dx.doi.org/10.1143/JPSJ.76.044501
20.
20. S. Oldenburger, S. Inagaki, T. Kobayashi, H. Arakawa, N. Ohyama, K. Kawashima, Y. Tobimatsu, A. Fujisawa, K. Itoh, and S.-I. Itoh, Plasma Phys. Control. Fusion 54, 055002 (2012).
http://dx.doi.org/10.1088/0741-3335/54/5/055002
21.
21. K. Kawashima, Y. Miyoshi, S. Oldenberger, S. Inagaki, H. Arakawa, Y. Nagashima, T. Yamada, M. Sasaki, T. Kobayashi, K. Uriu, S. Sugita, M. Yagi, N. Kasuya, A. Fujisawa, S.-I. Itoh, and K. Itoh, Plasma Fusion Res. 6, 2406118 (2011).
http://dx.doi.org/10.1585/pfr.6.2406118
22.
22. M. Ignatenko, M. Azumi, M. Yagi, S. Shinohara, S.-I. Itoh, and K. Itoh, Jpn. J. Appl. Phys., Part 1 46, 1680 (2007).
http://dx.doi.org/10.1143/JJAP.46.1680
23.
23. A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.682
24.
24. M. Sasaki, N. Kasuya, K. Itoh, M. Yagi, and S.-I. Itoh, JPS Conf. Proc. 1, 015011 (2014).
http://dx.doi.org/10.7566/JPSCP.1.015011
25.
25. Y. Kuramoto, Chemical Oscillations, waves and turbulence ( Dover Publications, 2003).
26.
26. P. W. Xi, X. Q. Xu, and P. H. Diamond, Phys. Rev. Lett. 112, 085001 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.085001
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/3/10.1063/1.4916490
Loading
/content/aip/journal/pop/22/3/10.1063/1.4916490
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/3/10.1063/1.4916490
2015-03-31
2016-09-29

Abstract

Bifurcation from a streamer to a solitary drift wave is obtained in three dimensional simulation of resistive drift waves in cylindrical plasmas. The solitary drift wave is observed in the regime where the collisional transport is important as well as fluctuation induced transport. The solitary drift wave forms a steep wave front in the azimuthal direction. The phase of higher harmonic modes are locked to that of the fundamental mode, so that the steep wave front is sustained for a long time compared to the typical time scale of the drift wave oscillation. The phase entrainment between the fundamental and second harmonic modes is studied, and the azimuthal structure of the stationary solution is found to be characterized by a parameter which is determined by the deviation of the fluctuations from the Boltzmann relation. There are two solutions of the azimuthal structures, which have steep wave front facing forward and backward in the wave propagation direction, respectively. The selection criterion of these solutions is derived theoretically from the stability of the phase entrainment. The simulation result and experimental observations are found to be consistent with the theoretical prediction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/3/1.4916490.html;jsessionid=VDOWlDpxVvN6Y2yaajCIlSX0.x-aip-live-03?itemId=/content/aip/journal/pop/22/3/10.1063/1.4916490&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/3/10.1063/1.4916490&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/3/10.1063/1.4916490'
Right1,Right2,Right3,