Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, Phys. Plasmas 4, 447 (1997).
2. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
3. A. R. Bell, A. P. L. Robinson, M. Sherlock, R. J. Kingham, and W. Rozmus, Plasma Phys. Controlled Fusion 48, R37 (2006).
4. A. P. L. Robinson and M. Sherlock, Phys. Plasmas 14, 083105 (2007).
5. A. P. L. Robinson, M. H. Key, and M. Tabak, Phys. Rev. Lett. 108, 125004 (2012).
6. A. P. L. Robinson and H. Schmitz, Phys. Plasmas 20, 062704 (2013).
7. H. Schmitz, R. Lloyd, and R. G. Evans, Plasma Phys. Controlled Fusion 54, 085016 (2012).
8. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).
9. M. Tabak, D. S. Clark, S. P. Hatchett, M. H. Key, B. F. Lasinski, R. A. Snavely, S. C. Wilks, R. P. J. Town, R. Stephens, E. M. Campbell et al., Phys. Plasmas 12, 057305 (2005).
10. T. G. White, N. J. Hartley, B. Borm, B. J. B. Crowley, J. W. O. Harris, D. C. Hochhaus, T. Kaempfer, K. Li, P. Neumayer, L. K. Pattison et al., Phys. Rev. Lett. 112, 145005 (2014).
11. D. J. Hoarty, P. Allan, S. F. James, C. Brown, L. M. R. Hobbs, M. P. Hill, J. W. O. Harris, J. Morton, M. G. Brookes, R. Shepherd et al., Phys. Rev. Lett. 110, 265003 (2013).
12. A. P. L. Robinson, H. Schmitz, and J. Pasley, Phys. Plasmas 20, 122701 (2013).
13. F. Perez, A. Debayle, J. Honrubia, M. Koenig, D. Batani, S. D. Baton, F. N. Beg, C. Benedetti, E. Brambrink, S. Chawla et al., Phys. Rev. Lett. 107, 065004 (2011).
14. A. Kemp and L. Divol, Phys. Rev. Lett. 109, 195005 (2012).
15. T. Kluge, T. Cowan, A. Debus, U. Schramm, K. Zeil, and M. Bussmann, Phys. Rev. Lett. 107, 205003 (2011).
16. J. C. Adam, A. Héron, and G. Laval, Phys. Rev. Lett. 97, 205006 (2006).
17. M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, Phys. Rev. Lett. 102, 045008 (2009).
18. M. Sherlock, Phys. Plasmas 16, 103101 (2009).
19. A. P. L. Robinson, H. Schmitz, J. S. Green, C. P. Ridgers, and N. Booth, “ Guiding of laser-generated fast electrons by exploiting the resistivity-gradients around a conical guide element,” Plasma Phys. Controlled Fusion (to be published).

Data & Media loading...


Article metrics loading...



The heating of a solid wire embedded in a solid substrate (of lower Z material) with relativistic electrons generated by ultra-intense laser irradiation is considered. Previously, it has been noted that the initial angular distribution of the fast electrons is a highly important factor in the efficacy of the heating [Robinson ., Phys. Plasmas , 122701 (2013)]. We show that, using 3D numerical simulations, the addition of an inverse conical taper at the front of wire can considerably improve the heating of the wire due to the reduction of angular spread of the fast electrons which is caused by transport through the inverse conical taper [Robinson ., “Guiding of laser-generated fast electrons by exploiting the resistivity-gradients around a conical guide element,” Plasma Phys. Controlled Fusion (to be published)].


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd