Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/22/4/10.1063/1.4917473
1.
1. N. M. Ferraro and S. C. Jardin, J. Comput. Phys. 228, 7742 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.07.015
2.
2. N. M. Ferraro, Phys. Plasmas 19, 056105 (2012).
http://dx.doi.org/10.1063/1.3694657
3.
3. N. M. Ferraro, T. E. Evans, L. L. Lao, R. A. Moyer, R. Nazikian, D. M. Orlov, M. W. Shafer, E. A. Unterberg, M. R. Wade, and A. Wingen, Nucl. Fusion 53, 073042 (2013).
http://dx.doi.org/10.1088/0029-5515/53/7/073042
4.
4. T. E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.235003
5.
5. T. E. Evans, R. A. Moyer, K. H. Burrell, M. E. Fenstermacher, I. Joseph, A. W. Leonard, T. H. Osborne, G. D. Porter, M. J. Schaffer, P. B. Snyder, P. R. Thomas, J. G. Watkins, and W. P. West, Nat. Phys. 2, 419 (2006).
http://dx.doi.org/10.1038/nphys312
6.
6. I. Joseph, Contrib. Plasma Phys. 52, 326 (2012).
http://dx.doi.org/10.1002/ctpp.201210014
7.
7. T. E. Evans, J. Nucl. Mater. 438, S11 (2013).
http://dx.doi.org/10.1016/j.jnucmat.2013.01.283
8.
8. M. A. Mahdavi and J. L. Luxon, Fusion Sci. Technol. 48, 2 (2005).
9.
9. R. Fischer et al., Plasma Phys. Controlled Fusion 54, 115008 (2012).
http://dx.doi.org/10.1088/0741-3335/54/11/115008
10.
10. K. C. Shaing and J. D. Callen, Phys. Fluids 26, 3315 (1983).
http://dx.doi.org/10.1063/1.864108
11.
11. K. C. Shaing, Phys. Plasmas 3, 4276 (1996).
http://dx.doi.org/10.1063/1.871557
12.
12. K. C. Shaing, Phys. Plasmas 10, 1443 (2003).
http://dx.doi.org/10.1063/1.1567285
13.
13. J. D. Callen, C. C. Hegna, and A. J. Cole, Nucl. Fusion 53, 113015 (2013).
http://dx.doi.org/10.1088/0029-5515/53/11/113015
14.
14. J. P. Freidberg, Ideal Magnetohydrodynamics ( Plenum Press, New York, 1987).
15.
15. F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.239
16.
16. R. E. Waltz, Phys. Fluids 25, 1269 (1982).
http://dx.doi.org/10.1063/1.863865
17.
17. R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007).
http://dx.doi.org/10.1063/1.2824376
18.
18. K. C. Shaing, S. A. Sabbagh, and M. S. Chu, Nucl. Fusion 50, 125012 (2010).
http://dx.doi.org/10.1088/0029-5515/50/12/125012
19.
19. Y. Q. Liu et al., Plasma Phys. Controlled Fusion 54, 124013 (2012).
http://dx.doi.org/10.1088/0741-3335/54/12/124013
20.
20. R. E. Waltz and F. W. Waelbroeck, Phys. Plasmas 19, 032508 (2012).
http://dx.doi.org/10.1063/1.3692222
21.
21. J. D. Callen, A. J. Cole, and C. C. Hegna, Phys. Plasmas 16, 082504 (2009);
http://dx.doi.org/10.1063/1.3206976
21.erratum, Phys. Plasmas 20, 069901 (2013).
http://dx.doi.org/10.1063/1.4810796
22.
22. R. E. Waltz, M. E. Austin, K. H. Burrell, and J. Candy, Phys. Plasmas 13, 052301 (2006).
http://dx.doi.org/10.1063/1.2195418
23.
23. M. Waktani, Stellarators and Heliotron Devices ( Oxford University Press, New York, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/pop/22/4/10.1063/1.4917473
Loading
/content/aip/journal/pop/22/4/10.1063/1.4917473
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/22/4/10.1063/1.4917473
2015-04-14
2016-12-07

Abstract

The linear response profiles for the 3D perturbed magnetic fields, currents, ion velocities, plasma density, pressures, and electric potential from low-n external resonant magnetic field perturbations (RMPs) are obtained from the collisional two-fluid M3D-C1 code [N. M. Ferraro and S. C. Jardin, J. Comput. Phys. , 7742 (2009)]. A newly developed post-processing RMPtran code computes the resulting quasilinear E×B and magnetic (J×B) radial transportflows with respect to the unperturbed flux surfaces in all channels. RMPtran simulations focus on ion (center of mass) particle and transient non-ambipolar current flows, as well as the toroidal angular momentum flow. The paper attempts to delineate the RMP transport mechanisms that might be responsible for the RMP density pump-out seen in DIII-D [M. A. Mahdavi and J. L. Luxon, Fusion Sci. Technol. , 2 (2005)]. Experimentally, the starting high toroidal rotation does not brake to a significantly lower rotation after the pump-out suggesting that convective and E×B transport mechanisms dominate. The direct J×B torque from the transient non-ambipolar radial current expected to accelerate plasma rotation is shown to cancel much of the Maxwell stress J×B torque expected to brake the plasma rotation. The dominant E×B Reynolds stress accelerates rotation at the top of the pedestal while braking rotation further down the pedestal.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/22/4/1.4917473.html;jsessionid=DTR4hYAhNPlug2VJRNbmf6pK.x-aip-live-06?itemId=/content/aip/journal/pop/22/4/10.1063/1.4917473&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/22/4/10.1063/1.4917473&pageURL=http://scitation.aip.org/content/aip/journal/pop/22/4/10.1063/1.4917473'
Right1,Right2,Right3,